
To be presented at the 18th International Conferen
e on Automated Dedu
tion(CADE'02), Copenhagen, Denmark, July 2002.

Springer-Verlag Lazy Theorem ProvingforBounded Model Che
king over In�nite Domains?Leonardo de Moura, Harald Rue�, and Maria Sorea??SRI InternationalComputer S
ien
e Laboratory333 Ravenswood AvenueMenlo Park, CA 94025, USAfdemoura, ruess, soreag�
sl.sri.
omhttp://www.
sl.sri.
om/Abstra
t. We investigate the
ombination of propositional SAT
he
k-ers with domain-spe
i�
 theorem provers as a foundation for boundedmodel
he
king over in�nite domains. Given a program M over an in�-nite state type, a linear temporal logi
 formula ' with domain-spe
i�

onstraints over program states, and an upper bound k, our pro
eduredetermines if there is a falsifying path of length k to the hypothesis thatM satis�es the spe
i�
ation '. This problem
an be redu
ed to the satis-�ability of Boolean
onstraint formulas. Our veri�
ation engine for thesekinds of formulas is lazy in that propositional abstra
tions of Boolean
onstraint formulas are in
rementally re�ned by generating lemmas ondemand from an automated analysis of spurious
ounterexamples us-ing theorem proving. We exemplify bounded model
he
king for timedautomata and for RTL level des
riptions, and investigate the lazy inte-gration of SAT solving and theorem proving.1 Introdu
tionModel
he
king de
ides the problem of whether a system satis�es a temporallogi
 property by exploring the underlying state spa
e. It applies primarily to�nite-state systems but also to
ertain in�nite-state systems, and the state spa
e
an be represented in symboli
 or expli
it form. Symboli
 model
he
king hastraditionally employed a boolean representation of state sets using binary de-
ision diagrams (BDD) [4℄ as a way of
he
king temporal properties, whereasexpli
it-state model
he
kers enumerate the set of rea
hable states of the sys-tem.Re
ently, the use of Boolean satis�ability (SAT) solvers for linear-time tem-poral logi
 (LTL) properties has been explored through a te
hnique known as? This resear
h was supported by SRI International internal resear
h and development,the DARPA NEST program through Contra
t F33615-01-C-1908 with AFRL, andthe National S
ien
e Foundation under grants CCR-00-86096 and CCR-0082560.?? Also aÆliated with University of Ulm, Germany.1

2bounded model
he
king (BMC) [7℄. As with symboli
 model
he
king, the stateis en
oded in terms of booleans. The program is unrolled a bounded number ofsteps for some bound k, and an LTL property is
he
ked for
ounterexamplesover
omputations of length k. For example, to
he
k whether a program withinitial state I and next-state relation T violates the invariant Inv in the �rst ksteps, one
he
ks, using a SAT solver:I(s0)^T (s0; s1)^T (s1; s2)^ : : : ^ T (sk�1; sk)^ (:Inv(s0)_ : : : _:Inv (sk)):This formula is satis�able if and only if there exists a path of length at most kfrom the initial state s0 whi
h violates the invariant Inv . For �nite state systems,BMC
an be seen as a
omplete pro
edure sin
e the size of
ounterexamples isessentially bounded by the diameter of the system [3℄. It has been demonstratedthat BMC
an be more e�e
tive in falsifying hypotheses than traditional model
he
king [7, 8℄.It is possible to extend the range of BMC to in�nite-state systems by en-
oding the sear
h for a
ounterexample as a satis�ability problem for the logi
of Boolean
onstraint formulas. For example, the BMC problem for timed au-tomata
an be
aptured in terms of a Boolean formula with linear arithmeti

onstraints. But the method presented here s
ales well beyond su
h simple arith-meti

lauses, sin
e the main requirement on any given
onstraint theory is thede
idability of the satis�ability problem on
onjun
tions of atomi

onstraints.Possible
onstraint theories in
lude, for example, linear arithmeti
, bitve
tors,arrays, regular expressions, equalities over terms with uninterpreted fun
tionsymbols, and
ombinations thereof [20, 24℄.Whereas BMC over �nite-state systems deals with �nding satisfying Booleanassignments, its generalization to in�nite-state systems is
on
erned with satis-�ability of Boolean
onstraint formulas. In initial experiments with PVS [21℄strategies, based on a
ombination of BDDs for propositional reasoning and avariant of loop residue [27℄ for arithmeti
, we were usually only able to
onstru
t
ounterexamples of small depths (� 5). Clearly, more spe
ialized veri�
ationte
hniques are needed. Sin
e BMC problems are often propositionally intensive,it seems to be more e�e
tive to augment SAT solvers with theorem proving
a-pabilities, su
h as ICS [10℄, than add propositional sear
h
apabilities to theoremprovers.Here, we look at the spe
i�

ombination of SAT solvers with de
ision pro-
edures, and we propose a method that we
all lemmas on demand, whi
h in-vokes the theorem prover lazily in order to eÆ
iently prune out spurious
oun-terexamples, namely,
ounterexamples that are generated by the SAT solver butdis
arded by the theorem prover by interpreting the propositional atoms. Forexample, the SAT solver might yield the satisfying assignment p, :q, where thepropositional variable p represents the atom x = y, and q represents f(x) = f(y).A de
ision pro
edure
an easily dete
t the in
onsisten
y in this assignment. Moreimportantly, it
an be used to generate a set of
on
i
ting assignments that
anbe used to
onstru
t a lemma that further
onstrains the sear
h. In the aboveexample, the lemma :p _ q
an be added as a new
lause in the input to the

3SAT solver. This pro
ess of re�ning Boolean formulas is similar in spirit to there�nement of abstra
tions based on the analysis of spurious
ounterexamples orfailed proof attempts [26, 25, 6, 16, 9, 14, 17℄.From a set of in
onsistent
onstraints in a spurious
ounterexample we obtainan explanation as an overapproximation of the minimal, in
onsistent subset ofthese
onstraints. The smaller the explanation that is generated from a spurious
ounterexample, the greater the pruning in the subsequent sear
h. In this way,the
omputation of explanations a

elerates the
onvergen
e of our pro
edure.Altogether, we present a method for bounded model
he
king over in�nite-state systems that
onsists of:{ A redu
tion to the satis�ability problem for Boolean
onstraint formulas.{ A lazy
ombination of SAT solving and theorem proving.{ An eÆ
ient method for
onstru
ting small explanations.In general, BMC over in�nite-state systems is not
omplete, but we obtain a
ompleteness result for BMC problems with invariant properties. The main
on-dition on
onstraints is that the satis�ability of the
onjun
tion of
onstraintsis de
idable. Thus, our BMC pro
edure
an be applied to in�nite-state systemseven when the (more) general model-
he
king problem is unde
idable.The paper is stru
tured as follows. In Se
tion 2 we provide some ba
k-ground material on Boolean
onstraints. Se
tion 3 lays the foundation of are�nement-based satis�ability pro
edure for Boolean
onstraint logi
. Next, Se
-tion 4 presents the details of BMC over domain-spe
i�

onstraints, and Se
tion 5dis
usses some simple examples for BMC over
lo
k
onstraints and the theoryof bitve
tors. In Se
tion 6 we experimentally investigate various design
hoi
esin lazy integrations of SAT solvers with theorem proving. Finally, in Se
tions 7and 8 we
ompare with related work and we draw
on
lusions.2 Ba
kgroundA set of variables V := fx1; : : : ; xng is said to be typed if there are nonemptysets D1 through Dn and a type assignment � su
h that �(xi) = Di. For a set oftyped variables V , a variable assignment is a fun
tion � from variables x 2 V toan element of �(x).Let V be a set of typed variables and L be an asso
iated logi
al language.A set of
onstraints in L is
alled a
onstraint theory C if it in
ludes
onstantstrue, false and if it is
losed under negation; a subset of C of
onstraints withfree variables in V 0 � V is denoted by C(V 0). For
 2 C and � an assignment forthe free variables in
, the value of the predi
ate [[
℄℄� is
alled the interpretationof
 w.r.t. �. Hereby, [[true℄℄� ([[false ℄℄�) is assumed to hold for all (for no) �,and [[:
℄℄� holds i� [[
℄℄� does not hold. A set of
onstraints C � C is said tobe satis�able if there exists a variable assignment � su
h that [[
℄℄� holds forevery
 in C; otherwise, C is said to be unsatis�able. Furthermore, a fun
tionC-sat(C) is
alled a C-satis�ability solver if it returns ? if the set of
onstraintsC is unsatis�able and a satisfying assignment for C otherwise.

4 For a given theory C, the set of boolean
onstraints Bool(C) in
ludes all
on-straints in C and it is
losed under
onjun
tion ^ , disjun
tion _ , and negation:: The notions of satis�ability, in
onsisten
y, satisfying assignment, and satis-�ability solver are homomorphi
ally lifted to the set of boolean
onstraints inthe usual way. If V = fp1; : : : ; png and the
orresponding type assignment �(pi)is either true or false, then Bool(ftrue; falseg [V) redu
es to the usual notionof Boolean logi
 with propositional variables fp1; : : : ; png. We
all a Booleansatis�ability solver also a SAT solver. N -ary disjun
tions of
onstraints are alsoreferred to as
lauses, and a formula ' 2 Bool(C(V)) is in
onjun
tive nor-mal form (CNF) if it is an n-ary
onjun
tion of
lauses. There is a linear-timesatis�ability-preserving transformation into CNF [22℄.3 Lazy Theorem ProvingSatis�ability solvers for propositional
onstraint formulas
an be obtained fromthe
ombination of a propositional SAT solver with de
ision pro
edures sim-ply by
onverting the problem into disjun
tive normal form, but the result isprohibitively expensive. Here, we lay out the foundation of a lazy
ombinationof SAT solvers with
onstraint solvers based on an in
remental re�nement ofBoolean formulas. We restri
t our analysis to formulas in CNF, sin
e most mod-ern SAT solvers expe
t their input to be in this format.Translation s
hemes between propositional formulas and Boolean
onstraintformulas are needed. Given a formula ' su
h a
orresponden
e is easily obtainedby abstra
ting
onstraints in ' with (fresh) propositional variables. More for-mally, for a formula ' 2 Bool(C) with atoms C = f
1; : : : ;
ng 2 C and a setof propositional variables P = fp1; : : : ; png not o

urring in ', the mapping �from Boolean formulas over f
1; : : : ;
ng to Boolean formulas over P is de�ned asthe homomorphism indu
ed by �(
i) = pi. The inverse
 of su
h an abstra
tionmapping � simply repla
es propositional variables pi with their asso
iated
on-straints
i. For example, the formula ' � f(x) 6= x^ f(f(x)) = x over equalitiesof terms with uninterpreted fun
tion symbols determines the fun
tion � with,say, �(f(x) 6= x) = p1 and �(f(f(x)) = x) = p2; thus �(') = p1 ^ p2. Moreover,a Boolean assignment � : P ! ftrue; falseg indu
es a set of
onstraints
(�) � f
 2 C j 9i: if �(pi) = true then
 =
(pi) else
 = :
(pi)g .Now, given a Boolean variable assignment � su
h that �(p1) = false and �(p2) =true,
(�) is the set of
onstraints ff(x) = x; f(f(x)) = xg. A
onsistent set of
onstraints C determines a set of assignments. For
hoosing an arbitrary, but�xed assignment from this set, we assume as given a fun
tion
hoose(C).Theorem 1. Let ' 2 Bool(C) be a formula in CNF, L be the literals in �('),and I(') := fL � L j
(L) is C-in
onsistentg be the set of C-in
onsisten
ies for'; then: ' is C-satis�able i� the following Boolean formula is satis�able:�(')^ (^fl1;:::;lng2I(')(:l1 _ : : : _:ln)):

5sat(')p := �(');loop� := B-sat(p);if � = ? then return ?;if C-sat(
(�)) 6= ? then return
hoose(
(�));I := _
2
(�):�(
); p := p^ IendloopFig. 1. Lazy theorem proving for Bool(C).Thus, every Bool(C) formula
an be transformed into an equisatis�able Booleanformula as long as the
onsisten
y problem for sets of
onstraints in C is de
id-able. This transformation enables one to use o�-the-shelf satis�ability
he
kersto determine the satis�ability of Boolean
onstraint formulas. On the other hand,the set of literals is exponential in the number of variables and, therefore, anexponential number of C-in
onsisten
y
he
ks is required in the worst
ase. Ithas been observed, however, that in many
ases only small fragments of the setof C-in
onsisten
ies are needed.Starting with p = �('), the pro
edure sat(') in Figure 1 realizes a guidedenumeration of the set of C-in
onsisten
ies . In ea
h loop, the SAT solver B-satsuggests a
andidate assignment � for the Boolean formula p, and the satis�-ability solver C-sat for C
he
ks whether the
orresponding set of
onstraints
(�) is
onsistent. Whenever this
onsisten
y
he
k fails, p is re�ned by addinga Boolean analogue I of this in
onsisten
y, and B-sat is applied to suggest a new
andidate assignment for the re�ned formula p^ I . This pro
edure terminates,sin
e, in every loop, I is not subsumed by p, and there are only a �nite numberof su
h strengthenings.Corollary 1. sat(') in Figure 1 is a satis�ability solver for Bool(C) formulasin CNF.We list some essential optimizations. If the variable assignments returned by theSAT solver are partial in that they in
lude don't
are values, then the numberof argument
onstraints to C-sat
an usually be redu
ed
onsiderably. The useof don't
are values also speeds up
onvergen
e, sin
e more general lemmas aregenerated. Now, assume a fun
tion explain(C), whi
h, for an in
onsistent setof
onstraints C, returns a minimal number of in
onsistent
onstraints in Cor a \good" overapproximation thereof. The use of explain(C) instead of thestronger C obviously a

elerates the pro
edure. We experimentally analyzethese eÆ
ien
y issues in Se
tion 6.

6 l :lx0 := x+mtrue x � 0;x0 := x�m� 1Fig. 2. The simple example.4 In�nite-State BMCGiven a BMC problem for an in�nite-state program, an LTL formula with
on-straints, and a bound on the length of
ounterexamples to be sear
hed for, wedes
ribe a sound redu
tion to the satis�ability problem of Boolean
onstraintformulas and we show
ompleteness for invariant properties. The en
oding oftransition relations follows the now-standard approa
h already taken in [13℄.Whereas in [7℄ LTL formulas are translated dire
tly into propositional formulas,we use B�u
hi automata for this en
oding. This simpli�es substantially the nota-tions and the proofs, but a dire
t translation
an sometimes be more su

in
t inthe number of variables needed. We use the
ommon notions for �nite automataover �nite and in�nite words, and we assume as given a
onstraint theory C witha satis�ability solver.Typed variables in V := fx1; : : : ; xng are also
alled state variables, anda program state is a variable assignment over V . A pair hI; T i is a C-programover V if I 2 Bool(C(V)) and T 2 Bool(C(V [V 0)), where V 0 is a primed,disjoint
opy of V . I is used to restri
t the set of initial program states, and Tspe
i�es the transition relation between states and their su

essor states. Theset of C-programs over V is denoted by Prg(C(V)). The semanti
s of a programP is given in terms of a transition system M in the usual way, and, by a slightabuse of notation, we sometimes writeM for both the program and its asso
iatedtransition system. The system depi
ted in Figure 2, for example, is expressedin terms of the program hI; T i over fx; lg, where the
ounter x is interpretedover the integers and the variable l for en
oding lo
ations is interpreted over theBooleans (the n-ary
onne
tive
 holds i� exa
tly one of its arguments holds).I(x; l) := x � 0 ^ lT (x; l; x0; l0) := (l ^ x0 = x+m ^ :l0)
(:l ^ x � 0 ^ x0 = x�m� 1 ^ :l0)
 (:l ^ x0 = x ^ l0)Initially, the program is in lo
ation l and x is greater than or equal to 0, andthe transitions in Figure 2 are en
oded by a
onjun
tion of
onstraints over the
urrent state variables x; l and the next state variables x0; l0.The formulas of the
onstraint linear temporal logi
 LTL(C) (in negation nor-mal form) are linear-time temporal logi
 formulas with the usual \next", \until",and \release" operators, and
onstraints
 2 C as atoms.' ::= true j false j
 j '1 ^'2 j '1 _'2 j X' j '1U'2 j '1R '2The formula X' holds on some path � i� ' holds in the se
ond state of �.'1U'2 holds on � if there is a state on the path where '2 holds, and at every

7pre
eding state on the path '1 holds. The release operator R is the logi
al dualof U. It requires that '2 holds along the path up to and in
luding the �rst state,where '1 holds. However, '1 is not required to hold eventually. The derivedoperators F' = true U' and G' = false R ' denote \eventually '" and\globally '". Given a programM 2 Prg(C) and a path � in M , the satis�abilityrelation M;� j= ' for an LTL(C) formula ' is given in the usual way with thenotable ex
eption of the
ase of
onstraint formulas
. In this
ase, M;� j=
 ifand only if
 holds in the start state of �. Assuming the notation above, theC-model
he
king problem M j= ' holds i� for all paths � = s0; s1; : : : in M withs0 2 I it is the
ase thatM;� j= '. Given a bound k, a programM 2 Prg(C) anda formula ' 2 LTL(C) we now
onsider the problem of
onstru
ting a formula[[M;'℄℄k 2 Bool(C), whi
h is satis�able if and only if there is a
ounterexample oflength k for the C-model
he
king problem M j= '. This
onstru
tion pro
eedsas follows.1. De�nition of [[M ℄℄k as the unfolding of the program M up to step k frominitial states (this requires k disjoint
opies of V).2. Translation of :' into a
orresponding B�u
hi automaton B:' whose lan-guage of a

epting words
onsists of the satisfying paths of :'.3. En
oding of the transition system for B:' and the B�u
hi a

eptan
e
ondi-tion as a Boolean formula, say [[B℄℄k.4. Forming the
onjun
tion [[M;'℄℄k := [[B℄℄k ^ [[M ℄℄k.5. A satisfying assignment for the formula [[M;'℄℄k indu
es a
ounterexampleof length k for the model
he
king problem M j= '.De�nition 1 (En
oding of C-Programs). The en
oding [[M ℄℄k of the kthunfolding of a C-program M = hI; T i in Prg(C(fx1; : : : ; xng)) is given by theBool(C) formula [[M ℄℄k.I0(x[0℄) := Ihfxi 7! xi[0℄ j xi 2 V giTj(x[j℄; x[j + 1℄) := T hfxi 7! xi[j℄ j xi 2 V g [fx0i 7! xi[j + 1℄ j xi 2 V gi[[M ℄℄k := I0(x[0℄)^ k�1̂j=0 Tj(x[j℄; x[j + 1℄)where fxi[j℄ j 0 � j � kg is a family of typed variables for en
oding the state ofvariable xi in the jth step, x[j℄ is used as an abbreviation for x1[j℄; : : : ; xn[j℄,and T hxi 7! xi[j℄i denotes simultaneous substitution of xi by xi[j℄ in formula T .A two-step unfolding of the simple program in Figure 2 is en
oded by [[simple℄℄2 :=I0 ^ T0 ^ T1 (�).I0 := x[0℄ � 0 ^ l[0℄T0 := (l[0℄ ^ (x[1℄ = x[0℄ +m) ^ :l[1℄)
(:l[0℄ ^ (x[0℄ � 0) ^ (x[1℄ = x[0℄�m� 1) ^ :l[1℄)
(:l[0℄ ^ (x[1℄ = x[0℄) ^ l[1℄)

8 T1 := (l[1℄ ^ (x[2℄ = x[1℄ +m) ^ :l[2℄)
(:l[1℄ ^ (x[1℄ � 0) ^ (x[2℄ = x[1℄�m� 1) ^ :l[2℄)
(:l[1℄ ^ (x[2℄ = x[1℄) ^ l[2℄)The translation of linear temporal logi
 formulas into a
orresponding B�u
hiautomaton is well-studied in the literature [11℄ and does not require additionalexplanation. Noti
e, however, that the translation of LTL(C) formulas yieldsB�u
hi automata with C-
onstraints as labels. Both the resulting transition systemand the bounded a

eptan
e test based on the dete
tion of rea
hable
y
les withat least one �nal state
an easily be en
oded as Bool(C) formulas.De�nition 2 (En
oding of B�u
hi Automata). Let V = fx1; : : : ; xng be aset of typed variables, B = h�;Q;�;Q0; F i be a B�u
hi automaton with labels �in Bool(C), and p
 be a variable (not in V), whi
h is interpreted over the �niteset of lo
ations Q of the B�u
hi automaton. For a given integer k, we obtain,as in De�nition 1, families of variables xi[j℄, p
[j℄ (1 � i � n, 0 � j � k) forrepresenting the jth state of B in a run of length k. Furthermore, the transitionrelation of B is en
oded in terms of the C-program BM over the set of variablesfp
g[V , and [[BM ℄℄k denotes the en
oding of this program as in De�nition 1.Now, given an en
oding of the a

eptan
e
onditiona

(B)k := k�1_j=0 �p
[k℄ = p
[j℄^ n̂v=1xv [k℄ = xv [j℄^� k_l=j+1 _f2F p
[l℄ = f��the k-th unfolding of B is de�ned by [[B℄℄k := [[BM ℄℄k ^ a

(B)k.An LTL(C) formula is said to be R-free (U-free) i� there is an equivalentformula (in negation normal form) not
ontaining the operator R (U). Notethat U-free formulas
orrespond to the notion of synta
ti
 safety formulas [28,15℄. Now, it
an be dire
tly observed from the semanti
s of LTL(C) formulas thatevery R-free formula
an be translated into an automaton over �nite words thata

epts a pre�x of all in�nite paths satisfying the given formula.De�nition 3. Given an automaton B over �nite words and the notation as inDe�nition 2, the en
oding of the k-ary unfolding of B is given by [[BM ℄℄k^a

(B)kwith the a

eptan
e
onditiona

(B)k := k_j=0 _f2F p
[j℄ = f .Consider the problem of �nding a
ounterexample of length k = 2 to the hy-pothesis that our running example in Figure 2 satis�es G (x � 0). The negatedproperty F (x < 0) is an R-free formula, and the
orresponding automaton Bover �nite words is displayed in Figure 3 (l1 is an a

epting state.). This au-tomaton is translated, a

ording to De�nition 3, into the formula[[B℄℄2 := I(B)^T0(B)^T1(B)^ a

(B)2 . (��)

9l0 l1x < 0x � 0
Fig. 3. Automaton for F (x < 0).The variables p
[j℄ and x[j℄ (j = 0; 1; 2) are used to represent the �rst threestates in a run.I(B) := p
[0℄ = l0T0(B) := (p
[0℄ = l0 ^x[0℄ � 0^ p
[1℄ = l0)
 (p
[0℄ = l0 ^x[0℄ < 0^ p
[1℄ = l1)T1(B) := (p
[1℄ = l0 ^x[1℄ � 0^ p
[2℄ = l0)
 (p
[1℄ = l0 ^x[1℄ < 0^ p
[2℄ = l1)a

(B)2 := p
[0℄ = l1 _ p
[1℄ = l1 _ p
[2℄ = l1The bounded model
he
king problem [[simple℄℄2 ^ [[B℄℄2 for the simple programis obtained by
onjoining the formulas (�) and (��). Altogether, we obtain the
ounterexample (0; l)! (m;:l)! (�1; l) of length 2 for the propertyG (x � 0).Theorem 2 (Soundness). Let M 2 Prg(C) and ' 2 LTL(C). If there exists anatural number k su
h that [[M;'℄℄k is satis�able, then M j== '.Proof sket
h. If [[M;'℄℄k is satis�able, then so are [[B℄℄k and [[M ℄℄k. From thesatis�ability of [[B℄℄k it follows that there exists a path in the B�u
hi automatonB that a

epts the negation of the formula '.In general, BMC over in�nite-state systems is not
omplete. Consider, forexample, the model
he
king problem M j= ' for the program M = hI; T i overthe variable V = fxg with I = (x = 0) and T = (x0 = x + 1) and the formula' = F (x < 0). M
an be seen as a one-
ounter automaton, where initially thevalue of the
ounter x is 0, and in every transition the value of x is in
remented by1. Obviously, it is the
ase that M 6j= ', but there exists no k 2 IN su
h that theformula [[M;'℄℄k is satis�able. Sin
e :' is not an R-free formula, the en
odingof the B�u
hi automaton Bk must
ontain, by De�nition 2, a �nite a

epting
y
le, des
ribed by p
[k℄ = p
[0℄^x[k℄ = x[0℄ or p
[k℄ = p
[1℄^x[k℄ = x[1℄ et
.Su
h a
y
le, however, does not exist, sin
e the program M
ontains only onenon
y
ling, in�nite path, where the value of x in
reases in every step, that isx[i+ 1℄ = x[i℄ + 1, forall i � 0.Theorem 3 (Completeness for Finite States). LetM be a C-program witha �nite set of rea
hable states, ' be an LTL(C) formula ', and k be a given bound;then: M j== ' implies 9k 2 IN: [[M;'℄℄k is satis�able.Proof sket
h. If M j== ', then there is a path in M that falsi�es the formula.Sin
e the set of rea
hable states is �nite, there is a �nite k su
h that [[M;'℄℄k issatis�able by
onstru
tion.For a U-free formula ', the negation :' is R-free and
an be en
oded interms of an automaton over �nite words. Therefore, by
onsidering only U-free properties one gets
ompleteness also for programs with an in�nite set of

10 l0y � 1
l1 l2

x := 0x := 0 y > xy := 0 x � yFig. 4. Timed automata example.rea
hable states. A parti
ularly interesting
lass of U-free formulas are invariantproperties.Theorem 4 (Completeness for Synta
ti
 Safety Formulas). Let M be aC-program, ' 2 LTL(C) be a U-free property, and k be some given integer bound.Then M j== ' implies 9k 2 IN: [[M;'℄℄k is satis�able.Proof sket
h. If M j== ' and ' is U-free then there is a �nite pre�x of a pathof M that falsi�es '. Thus, by
onstru
tion of [[M;'℄℄k, there is a �nite k su
hthat [[M;'℄℄k is satis�able.This
ompleteness result
an easily be generalized to all safety properties [15℄by observing that the pre�xes violated by these properties
an also be a

eptedby an automaton on �nite words.5 ExamplesWe demonstrate BMC over
lo
k
onstraints and the theory of bitve
tors bymeans of some simple but, we think, illustrative examples.The timed automaton [1℄ in Figure 4 has two real-valued
lo
ks x, y, thetransitions are de
orated with
lo
k
onstraints and
lo
k resets, and the invari-ant y � 1 in lo
ation l0 spe
i�es that the system may stay in l0 only as long asthe value of y does not ex
eed 1. The transitions
an easily be des
ribed in termsof a program with linear arithmeti

onstraints over states (p
; x; y), where p
is interpreted over the set of lo
ations fl0; l1; l2g and the
lo
k variables x, y areinterpreted over IR+0 . Here we show only the en
oding of the time delay steps.delay(p
; x; y; p
0; x0; y0) :=9 Æ � 0: ((p
 = l0) y0 � 1) ^ (x0 = x+ Æ) ^ (y0 = y + Æ) ^ (p
0 = p
)):This relation
an easily be transformed into an equivalent quanti�er-free formula.Now, assume the goal of falsifying the hypothesis that the timed automaton inFigure 4 satis�es the LTL(C) property ' = (G:l2), that is, the automaton neverrea
hes lo
ation l2. Using the BMC pro
edure over linear arithmeti

onstraintsone �nds the
ounterexample(l0; x = 0; y = 0)! (l1; x = 0; y = 0)! (l2; x = 0; y = 0)

11of length 2. By using Skolemization of the delay step Æ instead of quanti�erelimination, expli
it
onstraints are synthesized for the
orresponding delay stepsin
ountertra
es.Now, we examine BMC over a theory B of bitve
tors by en
oding the shiftregister example in [3℄ as follows.IBS (xn) := true TBS (xn; yn) := (yn = xn[1 : n� 1℄ ? 11)The variables xn and yn are interpreted over bitve
tors of length n, xn[1 : n� 1℄denotes extra
tion of bits 1 through n � 1, ? denotes
on
atenation, and 0n(1n) is the
onstant bitve
tor of length n with all bits set to zero (one). In theinitial state the
ontent of the register xn is arbitrary. Given the LTL(B) property' = F (xn = 0n) and k = 2 the
orresponding BMC problem redu
es to showingsatis�ability of the Bool(B) formula(x1 = x0[1 : n� 1℄ ? 11) ^ (x2 = x1[1 : n� 1℄ ? 11) ^(x0 6= 0n _x1 6= 0n _ x2 6= 0n) ^ (x0 = x2 _x1 = x2):The variables x0, x1, x2 are interpreted over bitve
tors of size n, sin
e theyare used to represent the �rst three states in a run of the shift register. Thesatis�ability of this formula is established by
hoosing all unit literals to be true.Using theory-spe
i�

anonization (rewrite) steps for the bitve
tor theory B [18℄,we obtain an equation between variables x2 and x0.x2 = x1[1 : n� 1℄ ? 11 = (x0[1 : n� 1℄ ? 11)[1 : n� 1℄ ? 11 = x0[2 : n� 1℄ ? 12This
anonization step
orresponds to a symboli
 simulation of depth 2 of thesyn
hronous
ir
uit. Now, in
ase the SAT solver de
ides the equation x0 = x2to be true, the bitve
tor de
ision pro
edures are
onfronted with solving theequality x0 = x0[2 : n� 1℄ ? 12. The most general solution for x0 is obtainedusing the solver in [18℄ and, by simple ba
ksubstitution, one gets a satisfyingassignment for x0, x1, x2, whi
h serves as a
ounterexample for the assertionthat the shift register eventually is zero. The number of
ase splits is linear in thebound k, and, by leaving the word size uninterpreted, our pro
edure invalidatesa family of shift registers without runtime penalties.6 EÆ
ien
y IssuesThe purpose of the experiments in this se
tion is to identify useful
on
epts andte
hniques for obtaining eÆ
ient implementations of the lazy theorem provingapproa
h. For these experiments we implemented several re�nements of the ba-si
 lazy theorem proving algorithm from Se
tion 3, using SAT solvers su
h asCha� [19℄ and ICS [10℄ for de
iding linear arithmeti

onstraints. These programseither returns ? in
ase the input Boolean
onstraint problem is unsatis�ableor an assignment for the variables. We des
ribe some of our experiments usingthe Bakery mutual ex
lusion proto
ol (see Figure 5). Usually, the yi
ounters

12 a1 a2 a3y01 := y2 + 1 y2 = 0_y1 � y2y01 := 0 b1 b2 b3y02 := y1 + 1 y1 = 0_:(y1 � y2)y02 := 0Fig. 5. Bakery Mutual Ex
lusion Proto
ol.are initialized with 0, but here we simultaneously
onsider a family of Bak-ery algorithms by relaxing the
ondition on initial values of the
ounters toy1 � 0 ^ y2 � 0. Our experiments represent worst-
ase s
enarios in that the
orresponding BMC problems are all unsatis�able. Thus, unsatis�ability of theBMC formula for a given k
orresponds to a veri�
ation of the mutual ex
lusionproperty for paths of length � k.Initial experiments with a dire
t implementation of the re�nement algorithmin Figure 1
learly show that this approa
h qui
kly be
omes impra
ti
al. Weidenti�ed two main reasons for this ineÆ
ien
y.First, for the interleaving semanti
s of the Bakery pro
esses, usually onlya small subset of assignments is needed for establishing satis�ability. This
analready be demonstrated using the simple example in Figure 2. Suppose a satis-fying assignment � (
ounterexample)
orresponding to exe
uting the transitionl �! :l with x0 = x+m in the �rst step; that is, [[l[0℄℄℄� , [[x[1℄ = x[0℄ +m℄℄� and[[:l[1℄℄℄� hold. Clearly, the value of the literals x[0℄ � 0, x[1℄ = x[0℄�m� 1, andx[1℄ = x[0℄ are don't
ares, sin
e they are asso
iated with some other transition.Overly eager assignment of truth values to these
onstraints results in uselesssear
h. For example, if [[x[1℄ = x[0℄℄℄� holds, then an in
onsisten
y is dete
ted,sin
e m > 0, and x[1℄ = x[0℄ + m = x[0℄. Consequently, the assignment � isdis
arded and the sear
h
ontinues. To remedy the situation we analyze thestru
ture of the formula before
onverting it to CNF, and use this informationto assign don't
are values to literals
orresponding to un�red transitions in ea
hstep.Se
ond, the
onvergen
e of the re�nement pro
ess must be a

elerated by�nding
on
ise overapproximations explain(C) of the minimal set of in
onsis-tent
onstraints C
orresponding to a given Boolean assignment. There is anobvious trade-o� between the
on
iseness of this approximation and the
ost for
omputing it. We are proposing an algorithm for �nding su
h an overapproxi-mation based on rerunning the de
ision pro
edures O(m�n) times, where m issome given upper bound on the number of iterations (see below) and n is thenumber of given
onstraints.The run in Figure 6 illustrates this pro
edure. The
onstraints in Figure 6.(a)are asserted to ICS from left-to-right. Sin
e ICS dete
ts a
on
i
t when assertingy6 � 0, this
onstraint is in the minimal in
onsistent set. Now, an overapproxima-tion of the minimal in
onsistent sets is produ
ed by
onne
ting
onstraints with
ommon variables (Figure 6.(a)). This overapproximation is iteratively re�nedby
olle
ting the
onstraints in an array as illustrated in Figure 6.(b). Con�gu-

13(a) : : : y5 > 0 y5 = y4 + 1 x5 = x4 + 1 y6 = y5 x6 = x5 y5 > y4 y6 � 0 : : :(b) array = 0 1 2 3 4y5 > 0 y5 = y4 + 1 y6 = y5 y5 > y4 y6 � 0Fig. 6. Tra
e for linear time explain fun
tion.rations
onsist of triples (C; l; h), where C is a set of
onstraints guaranteed tobe in the minimal in
onsistent set, and the integers l, h are the lower and upperbounds of
onstraint indi
es still under
onsideration. The initial
on�gurationin our example is (fy6 � 0g; 0; 3). In ea
h re�nement step, we maintain theinvariant that C [farray [i℄ j l � i � hg is in
onsistent. Given a
on�guration(C; l; h), individual
onstraints of index between l and h are added to C untilan in
onsisten
y is dete
ted. In the �rst iteration of our running example, wepro
ess
onstraints from right-to-left, and an in
onsisten
y is only dete
ted whenpro
essing y5 > 0. The new
on�guration (fy6 � 0; y5 > 0g; 1; 3) is obtained byadding this
onstraint to the set of
onstraints already known to be in a minimalin
onsistent set, by leaving h un
hanged, and by setting l to the in
rement of theindex of the new
onstraint. The order in whi
h
onstraints are asserted is in-verted after ea
h iteration. Thus, in the next step in our example, we su

essivelyadd
onstraints between 1 and 3 from left-to-right to the set fy6 � 0; y5 > 0g.An in
onsisten
y is �rst dete
ted when asserting y6 = y5 to this set, and thenew
on�guration is obtained as (fy6 � 0; y5 > 0; y6 = y5g; 1; 1), sin
e the lowerbound l is now left un
hanged and the upper bound is set to the de
rement ofthe index of the
onstraint for whi
h the in
onsisten
y has been dete
ted. Thepro
edure terminates if C in the
urrent
on�guration is in
onsistent or after mre�nements. In our example, two re�nement steps yield the minimal in
onsistentset fy5 > 0; y6 = y5; y6 � 0g. In general, the number of assertions is linear inthe number of
onstraints, and the algorithm returns the exa
t minimal set ifits
ardinality is less than or equal to the upper bound m of iterations.Given these re�nements to the satis�ability algorithm in Figure 1, we imple-mented an o�ine integration of Cha� with ICS, in whi
h the SAT solver and thede
ision pro
edures are treated as bla
k boxes, and both pro
edures are restartedin ea
h lazy re�nement step. Table 1 in
ludes some statisti
s for three di�erent
on�gurations depending on whether don't
are pro
essing or the linear explainare enabled. For ea
h
on�guration, we list the total time (in se
onds) and thenumber of
on
i
ts dete
ted by the de
ision pro
edure. This table indi
ates thatthe e�ort of assigning don't
are values depending on the asyn
hronous nature ofthe program and the use of explain fun
tions signi�
antly improves performan
e.Re
all that the experiments so far represent worst-
ase s
enarios in thatthe given formulas are unsatis�able. For BMC problems with
ounterexamples,however, our pro
edure usually
onverges mu
h faster. Consider, for examplethe mutual ex
lusion problem of the Bakery proto
ol with a guard y1 � y2 � 1instead of :(y1 � y2). The
orresponding
ounterexample for k = 5 is produ
ed

14 don't
ares, no explain no don't
ares, explain don't
ares, explaindepth time
on
i
ts time
on
i
ts time
on
i
ts5 0.71 66 45.23 577 0.31 166 2.36 132 83.32 855 0.32 187 12.03 340 286.81 1405 1.75 588 56.65 710 627.90 1942 2.90 739 230.88 1297 1321.57 2566 8.00 10510 985.12 2296 - - 15.28 18515 - - - - 511.12 646Table 1. O�ine lazy theorem proving ('-' is time � 1800 se
s).no explain explaindepth time
on
i
ts
alls to ICS time
on
i
ts
alls to ICS5 0.03 24 162 0.01 7 716 0.08 48 348 0.01 7 837 0.19 96 744 0.02 7 948 0.98 420 3426 0.05 29 4619 2.78 936 7936 0.19 70 120510 8.60 2008 17567 0.26 85 154315 - - - 4.07 530 13468Table 2. Online lazy theorem proving.in a fra
tion of a se
ond after eight re�nements.(a1; k1; b1; k2) ! (a2; 1 + k2; b1; k2) ! (a3; 1 + k2; b1; k2)!(a3; 1 + k2; b2; 2 + k2)! (a3; 1 + k2; b3; 2 + k2)This
ounterexample a
tually represents a family of tra
es, sin
e it is parame-terized by the
onstants k1 and k2, with k1; k2 � 0, whi
h have been introdu
edby the ICS de
ision pro
edures.In the
ase of lazy theorem proving, the o�ine integration is parti
ular expen-sive, sin
e restarts implies the re
onstru
tion of ICS logi
al
ontexts repetitively.Memoization of the de
ision pro
edure
alls does not improve the situation sig-ni�
antly, sin
e the assignments produ
ed by Cha� in subsequent
alls usuallydo not have long enough
ommon pre�xes. This observation, however, might notbe generalizable, sin
e it depends on the spe
i�
, randomized heuristi
s of Cha�for
hoosing variable assignments.In an online integration,
hoi
es for propositional variable assignments aresyn
hronized with extending the logi
al
ontext of the de
ision pro
edures withthe
orresponding atoms. Dete
tion of in
onsisten
ies in the logi
al
ontext ofthe de
ision pro
edures triggers ba
ktra
king in the sear
h for variable assign-ments. Furthermore, dete
ted in
onsisten
ies are propagated to the propositionalsear
h engine by adding the
orresponding in
onsisten
y
lause (or, using an ex-planation fun
tion, a good overapproximation of the minimally in
onsistent set

15of atoms in the logi
al
ontext). Sin
e state-of-the-art SAT solvers su
h as Cha�are missing the ne
essary API for realizing su
h an online integration, we devel-oped a homegrown SAT solver whi
h has most of the features of modern SATsolvers and integrated it with ICS. The results of using this online integration forthe Bakery example
an be found in Table 2 for two di�erent
on�gurations. 1For ea
h
on�guration, we list the total time (in se
onds), the number of
on-
i
ts dete
ted by ICS, and the total number of
alls to ICS. Altogether, using anexplanation fa
ility
learly pays o� in that the number of re�nement iterations(
on
i
ts) is redu
ed
onsiderable.7 Related WorkThere has been mu
h re
ent work in redu
ing the satis�ability problem of Booleanformulas over the theory of equality with uninterpreted fun
tion symbols to aSAT problem [5, 12, 23℄ using eager en
odings of possible instan
es of equalityaxioms. In
ontrast, lazy theorem proving introdu
es the semanti
s of the for-mula
onstraints on demand by analyzing spurious
ounterexamples. Also, ourpro
edure works uniformly for mu
h ri
her sets of
onstraint theories. It wouldbe interesting experimentally to
ompare the eager and the lazy approa
h, butben
hmark suites (e.g. www.e
e.
mu.edu/�mvelev) are
urrently only availableas en
odings of Boolean satis�ability problems.In resear
h that is most
losely related to ours, Barrett, Dill, and Stump [2℄des
ribe an integration of Cha� with CVC by abstra
ting the Boolean
onstraintformula to a propositional approximation, then in
rementally re�ning the ap-proximation based on diagnosing
on
i
ts using theorem proving, and �nallyadding the appropriate
on
i
t
lause to the propositional approximation. Thisintegration
orresponds dire
tly to an online integration in the lazy theoremparadigm. Their approa
h to generate good explanations is di�erent from oursin that they extend CVC with a
apability of abstra
t proofs for overapproxi-mating minimal sets of in
onsisten
ies. Also, optimizations based on don't
aresare not
onsidered in [2℄. The experimental results in [2℄
oin
ide with ours inthat they suggest that lazy theorem proving without explanations (there
alledthe naive approa
h) and o�ine integration qui
kly be
ome impra
ti
al. Usingequivalen
e
he
king for pipelined mi
ropro
essors, speedups of several orders ofmagnitude over their earlier SVC system are obtained.8 Con
lusionWe developed a bounded model
he
king (BMC) pro
edure for in�nite-statesystems and linear temporal logi
 formulas with
onstraints based on a redu
tionto the satis�ability problem of Boolean
onstraint logi
. This pro
edure is shownto be sound, and although in
omplete in general, we establish
ompleteness1 The di�eren
es in the number of
on
i
ts
ompared to Table 1 are due to the di�erentheuristi
s of the SAT solvers used.

16for invariant formulas. Sin
e BMC problems are propositionally intensive, wepropose a veri�
ation te
hnique based on a lazy
ombination of a SAT solverwith a
onstraint solver, whi
h introdu
es only the portion of the semanti
s of
onstraints that is relevant for
onstru
ting a BMC
ounterexample.We identi�ed a number of
on
epts ne
essary for obtaining eÆ
ient imple-mentations of lazy theorem proving. The �rst one is spe
ialized to BMC forasyn
hronous systems in that we generate partial Boolean assignments basedon the stru
ture of program for restri
ting the sear
h spa
e of the SAT solver.Se
ond, good approximations of minimal in
onsistent sets of
onstraints at rea-sonable
ost are essential. The proposed any-time algorithm uses a mixture ofstru
tural dependen
ies between
onstraints and a linear number of reruns of thede
ision pro
edure for re�ning overapproximations. Third, o�ine integration andrestarting the SAT solver results in repetitive work for the de
ision pro
edures.Based on these observations we realized a lazy, online integration in whi
h the
onstru
tion of partial assignments in the Boolean domain is syn
hronized withthe
onstru
tion of a
orresponding logi
al
ontext for the
onstraint solver, andin
onsisten
ies dete
ted by the
onstraint solver are immediately propagated tothe Boolean domain. First experimental results are very promising, and manystandard engineering
an be applied to signi�
antly improve running times.We barely s
rat
hed the surfa
e of possible appli
ations. Given the ri
h set ofpossible
onstraints, in
luding
onstraints over uninterpreted fun
tion symbols,for example, our extended BMC methods seems to be suitable for model
he
kingopen systems, where environments are only partially spe
i�ed. Also, it remainsto be seen if BMC based on lazy theorem proving is a viable alternative tospe
ialized model
he
king algorithms su
h as the ones for timed automata andextensions thereof for �nding bugs, or even to AI planners dealing with resour
e
onstraints and domain-spe
i�
 modeling.A
knowledgements. We would like to thank the referees for their invaluable
omments for improving this paper. S. Owre, J. Rushby, and N. Shankar providedmany useful inputs.Referen
es1. R. Alur, C. Cour
oubetis, and D. Dill. Model-
he
king for real-time systems. 5thSymp. on Logi
 in Computer S
ien
e (LICS 90), pages 414{425, 1990.2. C. W. Barrett, D. L. Dill, and A. Stump. Che
king Satis�ability of First-OrderFormulas by In
remental Translation to SAT, 2002. To be presented at CAV 2002.3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zh. Symboli
 model
he
king withoutBDDs. LNCS, 1579, 1999.4. R. E. Bryant. Graph-based algorithms for Boolean fun
tion manipulation. IEEETransa
tions on Computers, C-35(8):677{691, August 1986.5. R. E. Bryant, S. German, and M. N. Velev. Exploiting positive equality in a logi
of equality with uninterpreted fun
tions. LNCS, 1633:470{482, 1999.6. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.Counterexample-guided abstra
tion re�nement. LNCS, 1855:154{169, 2000.

177. E.M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model
he
king usingsatis�ability solving. Formal Methods in System Design, 19(1):7{34, 2001.8. F. Copty, L. Fix, R. Fraer, E. Giun
higlia, G. Kamhi, A. Ta

hella, and M.Y. Vardi.Bene�ts of bounded model
he
king in an industrial setting. LNCS, 2101:436{453,2001.9. Satyaki Das and David L. Dill. Su

essive approximation of abstra
t transitionrelations. In Symposium on Logi
 in Computer S
ien
e, pages 51{60. IEEE, 2001.10. J.-C. Filliâtre, S. Owre, H. Rue�, and N. Shankar. ICS: Integrated Canonizer andSolver. LNCS, 2102:246{249, 2001.11. Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple on-the-
yautomati
 veri�
ation of linear temporal logi
. In Proto
ol Spe
i�
ation Testingand Veri�
ation, pages 3{18, Warsaw, Poland, 1995. Chapman & Hall.12. A. Goel, K. Sajid, H. Zhou, and A. Aziz. BDD based pro
edures for a theory ofequality with uninterpreted fun
tions. LNCS, 1427:244{255, 1998.13. T. A. Henzinger, X. Ni
ollin, J. Sifakis, and S. Yovine. Symboli
 model
he
kingfor real-time systems. Information and Computation, 111(2):193{244, June 1994.14. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gr�egoire Sutre. Lazyabstra
tion. ACM SIGPLAN Noti
es, 31(1):58{70, 2002.15. Orna Kupferman and Moshe Y. Vardi. Model
he
king of safety properties. FormalMethods in System Design, 19(3):291{314, 2001.16. Yassine La
hne
h, Saddek Bensalem, Sergey Berezin, and Sam Owre. In
rementalveri�
ation by abstra
tion. LNCS, 2031:98{112, 2001.17. M.O. M�oller, H. Rue�, and M. Sorea. Predi
ate abstra
tion for dense real-timesystems. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 65(6), 2002.18. O. M�oller and H. Rue�. Solving bit-ve
tor equations. LNCS, 1522:36{48, 1998.19. Matthew W. Moskewi
z, Conor F. Madigan, Ying Zhao, Lintao Zhang, and SharadMalik. Cha�: Engineering an EÆ
ient SAT Solver. In Pro
eedings of the 38thDesign Automation Conferen
e (DAC'01), June 2001.20. G. Nelson and D. C. Oppen. Simpli�
ation by
ooperating de
ision pro
edures.ACM Transa
tions on Programming Languages and Systems, 1(2):245{257, 1979.21. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�
ation system.In 11th International Conferen
e on Automated Dedu
tion (CADE), volume 607of Le
ture Notes in Arti�
ial Intelligen
e, pages 748{752. Springer-Verlag, 1992.22. David A. Plaisted and Steven Greenbaum. A stru
ture preserving
lause formtranslation. Journal of Symboli
 Computation, 2(3):293{304, September 1986.23. A. Pnueli, Y. Rodeh, O. Shtri
hman, and M. Siegel. De
iding equality formulasby small domains instantiations. LNCS, 1633:455{469, 1999.24. H. Rue� and N. Shankar. De
onstru
ting Shostak. In 16th Symposium on Logi
in Computer S
ien
e (LICS 2001). IEEE Press, June 2001.25. Vlad Rusu and Eli Singerman. On proving safety properties by integrating stati
analysis, theorem proving and abstra
tion. LNCS, 1579:178{192, 1999.26. H. Sa��di. Modular and in
remental analysis of
on
urrent software systems. In14th IEEE International Conferen
e on Automated Software Engineering, pages92{101. IEEE Computer So
iety Press, 1999.27. Robert Shostak. De
iding linear inequalities by
omputing loop residues. Journalof the ACM, 28(4):769{779, O
tober 1981.28. A. P. Sistla. Safety, liveness and fairness in temporal logi
. Formal Aspe
ts ofComputing, 6(5):495{512, 1994.

