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t. We investigate the 
ombination of propositional SAT 
he
k-ers with domain-spe
i�
 theorem provers as a foundation for boundedmodel 
he
king over in�nite domains. Given a program M over an in�-nite state type, a linear temporal logi
 formula ' with domain-spe
i�

onstraints over program states, and an upper bound k, our pro
eduredetermines if there is a falsifying path of length k to the hypothesis thatM satis�es the spe
i�
ation '. This problem 
an be redu
ed to the satis-�ability of Boolean 
onstraint formulas. Our veri�
ation engine for thesekinds of formulas is lazy in that propositional abstra
tions of Boolean
onstraint formulas are in
rementally re�ned by generating lemmas ondemand from an automated analysis of spurious 
ounterexamples us-ing theorem proving. We exemplify bounded model 
he
king for timedautomata and for RTL level des
riptions, and investigate the lazy inte-gration of SAT solving and theorem proving.1 Introdu
tionModel 
he
king de
ides the problem of whether a system satis�es a temporallogi
 property by exploring the underlying state spa
e. It applies primarily to�nite-state systems but also to 
ertain in�nite-state systems, and the state spa
e
an be represented in symboli
 or expli
it form. Symboli
 model 
he
king hastraditionally employed a boolean representation of state sets using binary de-
ision diagrams (BDD) [4℄ as a way of 
he
king temporal properties, whereasexpli
it-state model 
he
kers enumerate the set of rea
hable states of the sys-tem.Re
ently, the use of Boolean satis�ability (SAT) solvers for linear-time tem-poral logi
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2bounded model 
he
king (BMC) [7℄. As with symboli
 model 
he
king, the stateis en
oded in terms of booleans. The program is unrolled a bounded number ofsteps for some bound k, and an LTL property is 
he
ked for 
ounterexamplesover 
omputations of length k. For example, to 
he
k whether a program withinitial state I and next-state relation T violates the invariant Inv in the �rst ksteps, one 
he
ks, using a SAT solver:I(s0)^T (s0; s1)^T (s1; s2)^ : : : ^ T (sk�1; sk)^ (:Inv(s0)_ : : : _:Inv (sk)):This formula is satis�able if and only if there exists a path of length at most kfrom the initial state s0 whi
h violates the invariant Inv . For �nite state systems,BMC 
an be seen as a 
omplete pro
edure sin
e the size of 
ounterexamples isessentially bounded by the diameter of the system [3℄. It has been demonstratedthat BMC 
an be more e�e
tive in falsifying hypotheses than traditional model
he
king [7, 8℄.It is possible to extend the range of BMC to in�nite-state systems by en-
oding the sear
h for a 
ounterexample as a satis�ability problem for the logi
of Boolean 
onstraint formulas. For example, the BMC problem for timed au-tomata 
an be 
aptured in terms of a Boolean formula with linear arithmeti

onstraints. But the method presented here s
ales well beyond su
h simple arith-meti
 
lauses, sin
e the main requirement on any given 
onstraint theory is thede
idability of the satis�ability problem on 
onjun
tions of atomi
 
onstraints.Possible 
onstraint theories in
lude, for example, linear arithmeti
, bitve
tors,arrays, regular expressions, equalities over terms with uninterpreted fun
tionsymbols, and 
ombinations thereof [20, 24℄.Whereas BMC over �nite-state systems deals with �nding satisfying Booleanassignments, its generalization to in�nite-state systems is 
on
erned with satis-�ability of Boolean 
onstraint formulas. In initial experiments with PVS [21℄strategies, based on a 
ombination of BDDs for propositional reasoning and avariant of loop residue [27℄ for arithmeti
, we were usually only able to 
onstru
t
ounterexamples of small depths (� 5). Clearly, more spe
ialized veri�
ationte
hniques are needed. Sin
e BMC problems are often propositionally intensive,it seems to be more e�e
tive to augment SAT solvers with theorem proving 
a-pabilities, su
h as ICS [10℄, than add propositional sear
h 
apabilities to theoremprovers.Here, we look at the spe
i�
 
ombination of SAT solvers with de
ision pro-
edures, and we propose a method that we 
all lemmas on demand, whi
h in-vokes the theorem prover lazily in order to eÆ
iently prune out spurious 
oun-terexamples, namely, 
ounterexamples that are generated by the SAT solver butdis
arded by the theorem prover by interpreting the propositional atoms. Forexample, the SAT solver might yield the satisfying assignment p, :q, where thepropositional variable p represents the atom x = y, and q represents f(x) = f(y).A de
ision pro
edure 
an easily dete
t the in
onsisten
y in this assignment. Moreimportantly, it 
an be used to generate a set of 
on
i
ting assignments that 
anbe used to 
onstru
t a lemma that further 
onstrains the sear
h. In the aboveexample, the lemma :p _ q 
an be added as a new 
lause in the input to the



3SAT solver. This pro
ess of re�ning Boolean formulas is similar in spirit to there�nement of abstra
tions based on the analysis of spurious 
ounterexamples orfailed proof attempts [26, 25, 6, 16, 9, 14, 17℄.From a set of in
onsistent 
onstraints in a spurious 
ounterexample we obtainan explanation as an overapproximation of the minimal, in
onsistent subset ofthese 
onstraints. The smaller the explanation that is generated from a spurious
ounterexample, the greater the pruning in the subsequent sear
h. In this way,the 
omputation of explanations a

elerates the 
onvergen
e of our pro
edure.Altogether, we present a method for bounded model 
he
king over in�nite-state systems that 
onsists of:{ A redu
tion to the satis�ability problem for Boolean 
onstraint formulas.{ A lazy 
ombination of SAT solving and theorem proving.{ An eÆ
ient method for 
onstru
ting small explanations.In general, BMC over in�nite-state systems is not 
omplete, but we obtain a
ompleteness result for BMC problems with invariant properties. The main 
on-dition on 
onstraints is that the satis�ability of the 
onjun
tion of 
onstraintsis de
idable. Thus, our BMC pro
edure 
an be applied to in�nite-state systemseven when the (more) general model-
he
king problem is unde
idable.The paper is stru
tured as follows. In Se
tion 2 we provide some ba
k-ground material on Boolean 
onstraints. Se
tion 3 lays the foundation of are�nement-based satis�ability pro
edure for Boolean 
onstraint logi
. Next, Se
-tion 4 presents the details of BMC over domain-spe
i�
 
onstraints, and Se
tion 5dis
usses some simple examples for BMC over 
lo
k 
onstraints and the theoryof bitve
tors. In Se
tion 6 we experimentally investigate various design 
hoi
esin lazy integrations of SAT solvers with theorem proving. Finally, in Se
tions 7and 8 we 
ompare with related work and we draw 
on
lusions.2 Ba
kgroundA set of variables V := fx1; : : : ; xng is said to be typed if there are nonemptysets D1 through Dn and a type assignment � su
h that �(xi) = Di. For a set oftyped variables V , a variable assignment is a fun
tion � from variables x 2 V toan element of �(x).Let V be a set of typed variables and L be an asso
iated logi
al language.A set of 
onstraints in L is 
alled a 
onstraint theory C if it in
ludes 
onstantstrue, false and if it is 
losed under negation; a subset of C of 
onstraints withfree variables in V 0 � V is denoted by C(V 0). For 
 2 C and � an assignment forthe free variables in 
, the value of the predi
ate [[
℄℄� is 
alled the interpretationof 
 w.r.t. �. Hereby, [[true℄℄� ([[false ℄℄�) is assumed to hold for all (for no) �,and [[:
℄℄� holds i� [[
℄℄� does not hold. A set of 
onstraints C � C is said tobe satis�able if there exists a variable assignment � su
h that [[
℄℄� holds forevery 
 in C; otherwise, C is said to be unsatis�able. Furthermore, a fun
tionC-sat(C) is 
alled a C-satis�ability solver if it returns ? if the set of 
onstraintsC is unsatis�able and a satisfying assignment for C otherwise.



4 For a given theory C, the set of boolean 
onstraints Bool(C) in
ludes all 
on-straints in C and it is 
losed under 
onjun
tion ^ , disjun
tion _ , and negation:: The notions of satis�ability, in
onsisten
y, satisfying assignment, and satis-�ability solver are homomorphi
ally lifted to the set of boolean 
onstraints inthe usual way. If V = fp1; : : : ; png and the 
orresponding type assignment �(pi)is either true or false, then Bool(ftrue; falseg [ V ) redu
es to the usual notionof Boolean logi
 with propositional variables fp1; : : : ; png. We 
all a Booleansatis�ability solver also a SAT solver. N -ary disjun
tions of 
onstraints are alsoreferred to as 
lauses, and a formula ' 2 Bool(C(V )) is in 
onjun
tive nor-mal form (CNF) if it is an n-ary 
onjun
tion of 
lauses. There is a linear-timesatis�ability-preserving transformation into CNF [22℄.3 Lazy Theorem ProvingSatis�ability solvers for propositional 
onstraint formulas 
an be obtained fromthe 
ombination of a propositional SAT solver with de
ision pro
edures sim-ply by 
onverting the problem into disjun
tive normal form, but the result isprohibitively expensive. Here, we lay out the foundation of a lazy 
ombinationof SAT solvers with 
onstraint solvers based on an in
remental re�nement ofBoolean formulas. We restri
t our analysis to formulas in CNF, sin
e most mod-ern SAT solvers expe
t their input to be in this format.Translation s
hemes between propositional formulas and Boolean 
onstraintformulas are needed. Given a formula ' su
h a 
orresponden
e is easily obtainedby abstra
ting 
onstraints in ' with (fresh) propositional variables. More for-mally, for a formula ' 2 Bool(C) with atoms C = f
1; : : : ; 
ng 2 C and a setof propositional variables P = fp1; : : : ; png not o

urring in ', the mapping �from Boolean formulas over f
1; : : : ; 
ng to Boolean formulas over P is de�ned asthe homomorphism indu
ed by �(
i) = pi. The inverse 
 of su
h an abstra
tionmapping � simply repla
es propositional variables pi with their asso
iated 
on-straints 
i. For example, the formula ' � f(x) 6= x^ f(f(x)) = x over equalitiesof terms with uninterpreted fun
tion symbols determines the fun
tion � with,say, �(f(x) 6= x) = p1 and �(f(f(x)) = x) = p2; thus �(') = p1 ^ p2. Moreover,a Boolean assignment � : P ! ftrue; falseg indu
es a set of 
onstraints
(�) � f
 2 C j 9i: if �(pi) = true then 
 = 
(pi) else 
 = :
(pi)g .Now, given a Boolean variable assignment � su
h that �(p1) = false and �(p2) =true, 
(�) is the set of 
onstraints ff(x) = x; f(f(x)) = xg. A 
onsistent set of
onstraints C determines a set of assignments. For 
hoosing an arbitrary, but�xed assignment from this set, we assume as given a fun
tion 
hoose(C).Theorem 1. Let ' 2 Bool(C) be a formula in CNF, L be the literals in �('),and I(') := fL � L j 
(L) is C-in
onsistentg be the set of C-in
onsisten
ies for'; then: ' is C-satis�able i� the following Boolean formula is satis�able:�(')^ ( ^fl1;:::;lng2I(')(:l1 _ : : : _:ln)):



5sat(')p := �(');loop� := B-sat(p);if � = ? then return ?;if C-sat(
(�)) 6= ? then return 
hoose(
(�));I := _
2
(�):�(
); p := p^ IendloopFig. 1. Lazy theorem proving for Bool(C).Thus, every Bool(C) formula 
an be transformed into an equisatis�able Booleanformula as long as the 
onsisten
y problem for sets of 
onstraints in C is de
id-able. This transformation enables one to use o�-the-shelf satis�ability 
he
kersto determine the satis�ability of Boolean 
onstraint formulas. On the other hand,the set of literals is exponential in the number of variables and, therefore, anexponential number of C-in
onsisten
y 
he
ks is required in the worst 
ase. Ithas been observed, however, that in many 
ases only small fragments of the setof C-in
onsisten
ies are needed.Starting with p = �('), the pro
edure sat(') in Figure 1 realizes a guidedenumeration of the set of C-in
onsisten
ies . In ea
h loop, the SAT solver B-satsuggests a 
andidate assignment � for the Boolean formula p, and the satis�-ability solver C-sat for C 
he
ks whether the 
orresponding set of 
onstraints
(�) is 
onsistent. Whenever this 
onsisten
y 
he
k fails, p is re�ned by addinga Boolean analogue I of this in
onsisten
y, and B-sat is applied to suggest a new
andidate assignment for the re�ned formula p^ I . This pro
edure terminates,sin
e, in every loop, I is not subsumed by p, and there are only a �nite numberof su
h strengthenings.Corollary 1. sat(') in Figure 1 is a satis�ability solver for Bool(C) formulasin CNF.We list some essential optimizations. If the variable assignments returned by theSAT solver are partial in that they in
lude don't 
are values, then the numberof argument 
onstraints to C-sat 
an usually be redu
ed 
onsiderably. The useof don't 
are values also speeds up 
onvergen
e, sin
e more general lemmas aregenerated. Now, assume a fun
tion explain(C), whi
h, for an in
onsistent setof 
onstraints C, returns a minimal number of in
onsistent 
onstraints in Cor a \good" overapproximation thereof. The use of explain(C) instead of thestronger C obviously a

elerates the pro
edure. We experimentally analyzethese eÆ
ien
y issues in Se
tion 6.



6 l :lx0 := x+mtrue x � 0;x0 := x�m� 1Fig. 2. The simple example.4 In�nite-State BMCGiven a BMC problem for an in�nite-state program, an LTL formula with 
on-straints, and a bound on the length of 
ounterexamples to be sear
hed for, wedes
ribe a sound redu
tion to the satis�ability problem of Boolean 
onstraintformulas and we show 
ompleteness for invariant properties. The en
oding oftransition relations follows the now-standard approa
h already taken in [13℄.Whereas in [7℄ LTL formulas are translated dire
tly into propositional formulas,we use B�u
hi automata for this en
oding. This simpli�es substantially the nota-tions and the proofs, but a dire
t translation 
an sometimes be more su

in
t inthe number of variables needed. We use the 
ommon notions for �nite automataover �nite and in�nite words, and we assume as given a 
onstraint theory C witha satis�ability solver.Typed variables in V := fx1; : : : ; xng are also 
alled state variables, anda program state is a variable assignment over V . A pair hI; T i is a C-programover V if I 2 Bool(C(V )) and T 2 Bool(C(V [ V 0)), where V 0 is a primed,disjoint 
opy of V . I is used to restri
t the set of initial program states, and Tspe
i�es the transition relation between states and their su

essor states. Theset of C-programs over V is denoted by Prg(C(V )). The semanti
s of a programP is given in terms of a transition system M in the usual way, and, by a slightabuse of notation, we sometimes writeM for both the program and its asso
iatedtransition system. The system depi
ted in Figure 2, for example, is expressedin terms of the program hI; T i over fx; lg, where the 
ounter x is interpretedover the integers and the variable l for en
oding lo
ations is interpreted over theBooleans (the n-ary 
onne
tive 
 holds i� exa
tly one of its arguments holds).I(x; l) := x � 0 ^ lT (x; l; x0; l0) := (l ^ x0 = x+m ^ :l0)
(:l ^ x � 0 ^ x0 = x�m� 1 ^ :l0)
 (:l ^ x0 = x ^ l0)Initially, the program is in lo
ation l and x is greater than or equal to 0, andthe transitions in Figure 2 are en
oded by a 
onjun
tion of 
onstraints over the
urrent state variables x; l and the next state variables x0; l0.The formulas of the 
onstraint linear temporal logi
 LTL(C) (in negation nor-mal form) are linear-time temporal logi
 formulas with the usual \next", \until",and \release" operators, and 
onstraints 
 2 C as atoms.' ::= true j false j 
 j '1 ^'2 j '1 _'2 j X' j '1U'2 j '1R '2The formula X' holds on some path � i� ' holds in the se
ond state of �.'1U'2 holds on � if there is a state on the path where '2 holds, and at every



7pre
eding state on the path '1 holds. The release operator R is the logi
al dualof U. It requires that '2 holds along the path up to and in
luding the �rst state,where '1 holds. However, '1 is not required to hold eventually. The derivedoperators F' = true U' and G' = false R ' denote \eventually '" and\globally '". Given a programM 2 Prg(C) and a path � in M , the satis�abilityrelation M;� j= ' for an LTL(C) formula ' is given in the usual way with thenotable ex
eption of the 
ase of 
onstraint formulas 
. In this 
ase, M;� j= 
 ifand only if 
 holds in the start state of �. Assuming the notation above, theC-model 
he
king problem M j= ' holds i� for all paths � = s0; s1; : : : in M withs0 2 I it is the 
ase thatM;� j= '. Given a bound k, a programM 2 Prg(C) anda formula ' 2 LTL(C) we now 
onsider the problem of 
onstru
ting a formula[[M;'℄℄k 2 Bool(C), whi
h is satis�able if and only if there is a 
ounterexample oflength k for the C-model 
he
king problem M j= '. This 
onstru
tion pro
eedsas follows.1. De�nition of [[M ℄℄k as the unfolding of the program M up to step k frominitial states (this requires k disjoint 
opies of V ).2. Translation of :' into a 
orresponding B�u
hi automaton B:' whose lan-guage of a

epting words 
onsists of the satisfying paths of :'.3. En
oding of the transition system for B:' and the B�u
hi a

eptan
e 
ondi-tion as a Boolean formula, say [[B℄℄k.4. Forming the 
onjun
tion [[M;'℄℄k := [[B℄℄k ^ [[M ℄℄k.5. A satisfying assignment for the formula [[M;'℄℄k indu
es a 
ounterexampleof length k for the model 
he
king problem M j= '.De�nition 1 (En
oding of C-Programs). The en
oding [[M ℄℄k of the kthunfolding of a C-program M = hI; T i in Prg(C(fx1; : : : ; xng)) is given by theBool(C) formula [[M ℄℄k.I0(x[0℄) := Ihfxi 7! xi[0℄ j xi 2 V giTj(x[j℄; x[j + 1℄) := T hfxi 7! xi[j℄ j xi 2 V g [ fx0i 7! xi[j + 1℄ j xi 2 V gi[[M ℄℄k := I0(x[0℄)^ k�1̂j=0 Tj(x[j℄; x[j + 1℄)where fxi[j℄ j 0 � j � kg is a family of typed variables for en
oding the state ofvariable xi in the jth step, x[j℄ is used as an abbreviation for x1[j℄; : : : ; xn[j℄,and T hxi 7! xi[j℄i denotes simultaneous substitution of xi by xi[j℄ in formula T .A two-step unfolding of the simple program in Figure 2 is en
oded by [[simple℄℄2 :=I0 ^ T0 ^ T1 (�).I0 := x[0℄ � 0 ^ l[0℄T0 := ( l[0℄ ^ (x[1℄ = x[0℄ +m) ^ :l[1℄ )
(:l[0℄ ^ (x[0℄ � 0) ^ (x[1℄ = x[0℄�m� 1) ^ :l[1℄ )
(:l[0℄ ^ (x[1℄ = x[0℄) ^ l[1℄ )



8 T1 := ( l[1℄ ^ (x[2℄ = x[1℄ +m) ^ :l[2℄ )
(:l[1℄ ^ (x[1℄ � 0) ^ (x[2℄ = x[1℄�m� 1) ^ :l[2℄ )
(:l[1℄ ^ (x[2℄ = x[1℄) ^ l[2℄ )The translation of linear temporal logi
 formulas into a 
orresponding B�u
hiautomaton is well-studied in the literature [11℄ and does not require additionalexplanation. Noti
e, however, that the translation of LTL(C) formulas yieldsB�u
hi automata with C-
onstraints as labels. Both the resulting transition systemand the bounded a

eptan
e test based on the dete
tion of rea
hable 
y
les withat least one �nal state 
an easily be en
oded as Bool(C) formulas.De�nition 2 (En
oding of B�u
hi Automata). Let V = fx1; : : : ; xng be aset of typed variables, B = h�;Q;�;Q0; F i be a B�u
hi automaton with labels �in Bool(C), and p
 be a variable (not in V ), whi
h is interpreted over the �niteset of lo
ations Q of the B�u
hi automaton. For a given integer k, we obtain,as in De�nition 1, families of variables xi[j℄, p
[j℄ (1 � i � n, 0 � j � k) forrepresenting the jth state of B in a run of length k. Furthermore, the transitionrelation of B is en
oded in terms of the C-program BM over the set of variablesfp
g[V , and [[BM ℄℄k denotes the en
oding of this program as in De�nition 1.Now, given an en
oding of the a

eptan
e 
onditiona

(B)k := k�1_j=0 �p
[k℄ = p
[j℄^ n̂v=1xv [k℄ = xv [j℄^� k_l=j+1 _f2F p
[l℄ = f��the k-th unfolding of B is de�ned by [[B℄℄k := [[BM ℄℄k ^ a

(B)k.An LTL(C) formula is said to be R-free (U-free) i� there is an equivalentformula (in negation normal form) not 
ontaining the operator R (U). Notethat U-free formulas 
orrespond to the notion of synta
ti
 safety formulas [28,15℄. Now, it 
an be dire
tly observed from the semanti
s of LTL(C) formulas thatevery R-free formula 
an be translated into an automaton over �nite words thata

epts a pre�x of all in�nite paths satisfying the given formula.De�nition 3. Given an automaton B over �nite words and the notation as inDe�nition 2, the en
oding of the k-ary unfolding of B is given by [[BM ℄℄k^a

(B)kwith the a

eptan
e 
onditiona

(B)k := k_j=0 _f2F p
[j℄ = f .Consider the problem of �nding a 
ounterexample of length k = 2 to the hy-pothesis that our running example in Figure 2 satis�es G (x � 0). The negatedproperty F (x < 0) is an R-free formula, and the 
orresponding automaton Bover �nite words is displayed in Figure 3 (l1 is an a

epting state.). This au-tomaton is translated, a

ording to De�nition 3, into the formula[[B℄℄2 := I(B)^T0(B)^T1(B)^ a

(B)2 . (��)



9l0 l1x < 0x � 0
Fig. 3. Automaton for F (x < 0).The variables p
[j℄ and x[j℄ (j = 0; 1; 2) are used to represent the �rst threestates in a run.I(B) := p
[0℄ = l0T0(B) := (p
[0℄ = l0 ^x[0℄ � 0^ p
[1℄ = l0)
 (p
[0℄ = l0 ^x[0℄ < 0^ p
[1℄ = l1)T1(B) := (p
[1℄ = l0 ^x[1℄ � 0^ p
[2℄ = l0)
 (p
[1℄ = l0 ^x[1℄ < 0^ p
[2℄ = l1)a

(B)2 := p
[0℄ = l1 _ p
[1℄ = l1 _ p
[2℄ = l1The bounded model 
he
king problem [[simple℄℄2 ^ [[B℄℄2 for the simple programis obtained by 
onjoining the formulas (�) and (��). Altogether, we obtain the
ounterexample (0; l)! (m;:l)! (�1; l) of length 2 for the propertyG (x � 0).Theorem 2 (Soundness). Let M 2 Prg(C) and ' 2 LTL(C). If there exists anatural number k su
h that [[M;'℄℄k is satis�able, then M j== '.Proof sket
h. If [[M;'℄℄k is satis�able, then so are [[B℄℄k and [[M ℄℄k. From thesatis�ability of [[B℄℄k it follows that there exists a path in the B�u
hi automatonB that a

epts the negation of the formula '.In general, BMC over in�nite-state systems is not 
omplete. Consider, forexample, the model 
he
king problem M j= ' for the program M = hI; T i overthe variable V = fxg with I = (x = 0) and T = (x0 = x + 1) and the formula' = F (x < 0). M 
an be seen as a one-
ounter automaton, where initially thevalue of the 
ounter x is 0, and in every transition the value of x is in
remented by1. Obviously, it is the 
ase that M 6j= ', but there exists no k 2 IN su
h that theformula [[M;'℄℄k is satis�able. Sin
e :' is not an R-free formula, the en
odingof the B�u
hi automaton Bk must 
ontain, by De�nition 2, a �nite a

epting
y
le, des
ribed by p
[k℄ = p
[0℄^x[k℄ = x[0℄ or p
[k℄ = p
[1℄^x[k℄ = x[1℄ et
.Su
h a 
y
le, however, does not exist, sin
e the program M 
ontains only onenon
y
ling, in�nite path, where the value of x in
reases in every step, that isx[i+ 1℄ = x[i℄ + 1, forall i � 0.Theorem 3 (Completeness for Finite States). LetM be a C-program witha �nite set of rea
hable states, ' be an LTL(C) formula ', and k be a given bound;then: M j== ' implies 9k 2 IN: [[M;'℄℄k is satis�able.Proof sket
h. If M j== ', then there is a path in M that falsi�es the formula.Sin
e the set of rea
hable states is �nite, there is a �nite k su
h that [[M;'℄℄k issatis�able by 
onstru
tion.For a U-free formula ', the negation :' is R-free and 
an be en
oded interms of an automaton over �nite words. Therefore, by 
onsidering only U-free properties one gets 
ompleteness also for programs with an in�nite set of



10 l0y � 1
l1 l2

x := 0x := 0 y > xy := 0 x � yFig. 4. Timed automata example.rea
hable states. A parti
ularly interesting 
lass of U-free formulas are invariantproperties.Theorem 4 (Completeness for Synta
ti
 Safety Formulas). Let M be aC-program, ' 2 LTL(C) be a U-free property, and k be some given integer bound.Then M j== ' implies 9k 2 IN: [[M;'℄℄k is satis�able.Proof sket
h. If M j== ' and ' is U-free then there is a �nite pre�x of a pathof M that falsi�es '. Thus, by 
onstru
tion of [[M;'℄℄k, there is a �nite k su
hthat [[M;'℄℄k is satis�able.This 
ompleteness result 
an easily be generalized to all safety properties [15℄by observing that the pre�xes violated by these properties 
an also be a

eptedby an automaton on �nite words.5 ExamplesWe demonstrate BMC over 
lo
k 
onstraints and the theory of bitve
tors bymeans of some simple but, we think, illustrative examples.The timed automaton [1℄ in Figure 4 has two real-valued 
lo
ks x, y, thetransitions are de
orated with 
lo
k 
onstraints and 
lo
k resets, and the invari-ant y � 1 in lo
ation l0 spe
i�es that the system may stay in l0 only as long asthe value of y does not ex
eed 1. The transitions 
an easily be des
ribed in termsof a program with linear arithmeti
 
onstraints over states (p
; x; y), where p
is interpreted over the set of lo
ations fl0; l1; l2g and the 
lo
k variables x, y areinterpreted over IR+0 . Here we show only the en
oding of the time delay steps.delay(p
; x; y; p
0; x0; y0) :=9 Æ � 0: ((p
 = l0 ) y0 � 1) ^ (x0 = x+ Æ) ^ (y0 = y + Æ) ^ (p
0 = p
)):This relation 
an easily be transformed into an equivalent quanti�er-free formula.Now, assume the goal of falsifying the hypothesis that the timed automaton inFigure 4 satis�es the LTL(C) property ' = (G:l2), that is, the automaton neverrea
hes lo
ation l2. Using the BMC pro
edure over linear arithmeti
 
onstraintsone �nds the 
ounterexample(l0; x = 0; y = 0)! (l1; x = 0; y = 0)! (l2; x = 0; y = 0)



11of length 2. By using Skolemization of the delay step Æ instead of quanti�erelimination, expli
it 
onstraints are synthesized for the 
orresponding delay stepsin 
ountertra
es.Now, we examine BMC over a theory B of bitve
tors by en
oding the shiftregister example in [3℄ as follows.IBS (xn) := true TBS (xn; yn) := (yn = xn[1 : n� 1℄ ? 11)The variables xn and yn are interpreted over bitve
tors of length n, xn[1 : n� 1℄denotes extra
tion of bits 1 through n � 1, ? denotes 
on
atenation, and 0n(1n) is the 
onstant bitve
tor of length n with all bits set to zero (one). In theinitial state the 
ontent of the register xn is arbitrary. Given the LTL(B) property' = F (xn = 0n) and k = 2 the 
orresponding BMC problem redu
es to showingsatis�ability of the Bool(B) formula(x1 = x0[1 : n� 1℄ ? 11) ^ (x2 = x1[1 : n� 1℄ ? 11) ^(x0 6= 0n _x1 6= 0n _ x2 6= 0n) ^ (x0 = x2 _x1 = x2):The variables x0, x1, x2 are interpreted over bitve
tors of size n, sin
e theyare used to represent the �rst three states in a run of the shift register. Thesatis�ability of this formula is established by 
hoosing all unit literals to be true.Using theory-spe
i�
 
anonization (rewrite) steps for the bitve
tor theory B [18℄,we obtain an equation between variables x2 and x0.x2 = x1[1 : n� 1℄ ? 11 = (x0[1 : n� 1℄ ? 11)[1 : n� 1℄ ? 11 = x0[2 : n� 1℄ ? 12This 
anonization step 
orresponds to a symboli
 simulation of depth 2 of thesyn
hronous 
ir
uit. Now, in 
ase the SAT solver de
ides the equation x0 = x2to be true, the bitve
tor de
ision pro
edures are 
onfronted with solving theequality x0 = x0[2 : n� 1℄ ? 12. The most general solution for x0 is obtainedusing the solver in [18℄ and, by simple ba
ksubstitution, one gets a satisfyingassignment for x0, x1, x2, whi
h serves as a 
ounterexample for the assertionthat the shift register eventually is zero. The number of 
ase splits is linear in thebound k, and, by leaving the word size uninterpreted, our pro
edure invalidatesa family of shift registers without runtime penalties.6 EÆ
ien
y IssuesThe purpose of the experiments in this se
tion is to identify useful 
on
epts andte
hniques for obtaining eÆ
ient implementations of the lazy theorem provingapproa
h. For these experiments we implemented several re�nements of the ba-si
 lazy theorem proving algorithm from Se
tion 3, using SAT solvers su
h asCha� [19℄ and ICS [10℄ for de
iding linear arithmeti
 
onstraints. These programseither returns ? in 
ase the input Boolean 
onstraint problem is unsatis�ableor an assignment for the variables. We des
ribe some of our experiments usingthe Bakery mutual ex
lusion proto
ol (see Figure 5). Usually, the yi 
ounters



12 a1 a2 a3y01 := y2 + 1 y2 = 0_y1 � y2y01 := 0 b1 b2 b3y02 := y1 + 1 y1 = 0_:(y1 � y2)y02 := 0Fig. 5. Bakery Mutual Ex
lusion Proto
ol.are initialized with 0, but here we simultaneously 
onsider a family of Bak-ery algorithms by relaxing the 
ondition on initial values of the 
ounters toy1 � 0 ^ y2 � 0. Our experiments represent worst-
ase s
enarios in that the
orresponding BMC problems are all unsatis�able. Thus, unsatis�ability of theBMC formula for a given k 
orresponds to a veri�
ation of the mutual ex
lusionproperty for paths of length � k.Initial experiments with a dire
t implementation of the re�nement algorithmin Figure 1 
learly show that this approa
h qui
kly be
omes impra
ti
al. Weidenti�ed two main reasons for this ineÆ
ien
y.First, for the interleaving semanti
s of the Bakery pro
esses, usually onlya small subset of assignments is needed for establishing satis�ability. This 
analready be demonstrated using the simple example in Figure 2. Suppose a satis-fying assignment � (
ounterexample) 
orresponding to exe
uting the transitionl �! :l with x0 = x+m in the �rst step; that is, [[l[0℄℄℄� , [[x[1℄ = x[0℄ +m℄℄� and[[:l[1℄℄℄� hold. Clearly, the value of the literals x[0℄ � 0, x[1℄ = x[0℄�m� 1, andx[1℄ = x[0℄ are don't 
ares, sin
e they are asso
iated with some other transition.Overly eager assignment of truth values to these 
onstraints results in uselesssear
h. For example, if [[x[1℄ = x[0℄℄℄� holds, then an in
onsisten
y is dete
ted,sin
e m > 0, and x[1℄ = x[0℄ + m = x[0℄. Consequently, the assignment � isdis
arded and the sear
h 
ontinues. To remedy the situation we analyze thestru
ture of the formula before 
onverting it to CNF, and use this informationto assign don't 
are values to literals 
orresponding to un�red transitions in ea
hstep.Se
ond, the 
onvergen
e of the re�nement pro
ess must be a

elerated by�nding 
on
ise overapproximations explain(C) of the minimal set of in
onsis-tent 
onstraints C 
orresponding to a given Boolean assignment. There is anobvious trade-o� between the 
on
iseness of this approximation and the 
ost for
omputing it. We are proposing an algorithm for �nding su
h an overapproxi-mation based on rerunning the de
ision pro
edures O(m�n) times, where m issome given upper bound on the number of iterations (see below) and n is thenumber of given 
onstraints.The run in Figure 6 illustrates this pro
edure. The 
onstraints in Figure 6.(a)are asserted to ICS from left-to-right. Sin
e ICS dete
ts a 
on
i
t when assertingy6 � 0, this 
onstraint is in the minimal in
onsistent set. Now, an overapproxima-tion of the minimal in
onsistent sets is produ
ed by 
onne
ting 
onstraints with
ommon variables (Figure 6.(a)). This overapproximation is iteratively re�nedby 
olle
ting the 
onstraints in an array as illustrated in Figure 6.(b). Con�gu-



13(a) : : : y5 > 0 y5 = y4 + 1 x5 = x4 + 1 y6 = y5 x6 = x5 y5 > y4 y6 � 0 : : :(b) array = 0 1 2 3 4y5 > 0 y5 = y4 + 1 y6 = y5 y5 > y4 y6 � 0Fig. 6. Tra
e for linear time explain fun
tion.rations 
onsist of triples (C; l; h), where C is a set of 
onstraints guaranteed tobe in the minimal in
onsistent set, and the integers l, h are the lower and upperbounds of 
onstraint indi
es still under 
onsideration. The initial 
on�gurationin our example is (fy6 � 0g; 0; 3). In ea
h re�nement step, we maintain theinvariant that C [ farray [i℄ j l � i � hg is in
onsistent. Given a 
on�guration(C; l; h), individual 
onstraints of index between l and h are added to C untilan in
onsisten
y is dete
ted. In the �rst iteration of our running example, wepro
ess 
onstraints from right-to-left, and an in
onsisten
y is only dete
ted whenpro
essing y5 > 0. The new 
on�guration (fy6 � 0; y5 > 0g; 1; 3) is obtained byadding this 
onstraint to the set of 
onstraints already known to be in a minimalin
onsistent set, by leaving h un
hanged, and by setting l to the in
rement of theindex of the new 
onstraint. The order in whi
h 
onstraints are asserted is in-verted after ea
h iteration. Thus, in the next step in our example, we su

essivelyadd 
onstraints between 1 and 3 from left-to-right to the set fy6 � 0; y5 > 0g.An in
onsisten
y is �rst dete
ted when asserting y6 = y5 to this set, and thenew 
on�guration is obtained as (fy6 � 0; y5 > 0; y6 = y5g; 1; 1), sin
e the lowerbound l is now left un
hanged and the upper bound is set to the de
rement ofthe index of the 
onstraint for whi
h the in
onsisten
y has been dete
ted. Thepro
edure terminates if C in the 
urrent 
on�guration is in
onsistent or after mre�nements. In our example, two re�nement steps yield the minimal in
onsistentset fy5 > 0; y6 = y5; y6 � 0g. In general, the number of assertions is linear inthe number of 
onstraints, and the algorithm returns the exa
t minimal set ifits 
ardinality is less than or equal to the upper bound m of iterations.Given these re�nements to the satis�ability algorithm in Figure 1, we imple-mented an o�ine integration of Cha� with ICS, in whi
h the SAT solver and thede
ision pro
edures are treated as bla
k boxes, and both pro
edures are restartedin ea
h lazy re�nement step. Table 1 in
ludes some statisti
s for three di�erent
on�gurations depending on whether don't 
are pro
essing or the linear explainare enabled. For ea
h 
on�guration, we list the total time (in se
onds) and thenumber of 
on
i
ts dete
ted by the de
ision pro
edure. This table indi
ates thatthe e�ort of assigning don't 
are values depending on the asyn
hronous nature ofthe program and the use of explain fun
tions signi�
antly improves performan
e.Re
all that the experiments so far represent worst-
ase s
enarios in thatthe given formulas are unsatis�able. For BMC problems with 
ounterexamples,however, our pro
edure usually 
onverges mu
h faster. Consider, for examplethe mutual ex
lusion problem of the Bakery proto
ol with a guard y1 � y2 � 1instead of :(y1 � y2). The 
orresponding 
ounterexample for k = 5 is produ
ed



14 don't 
ares, no explain no don't 
ares, explain don't 
ares, explaindepth time 
on
i
ts time 
on
i
ts time 
on
i
ts5 0.71 66 45.23 577 0.31 166 2.36 132 83.32 855 0.32 187 12.03 340 286.81 1405 1.75 588 56.65 710 627.90 1942 2.90 739 230.88 1297 1321.57 2566 8.00 10510 985.12 2296 - - 15.28 18515 - - - - 511.12 646Table 1. O�ine lazy theorem proving ('-' is time � 1800 se
s).no explain explaindepth time 
on
i
ts 
alls to ICS time 
on
i
ts 
alls to ICS5 0.03 24 162 0.01 7 716 0.08 48 348 0.01 7 837 0.19 96 744 0.02 7 948 0.98 420 3426 0.05 29 4619 2.78 936 7936 0.19 70 120510 8.60 2008 17567 0.26 85 154315 - - - 4.07 530 13468Table 2. Online lazy theorem proving.in a fra
tion of a se
ond after eight re�nements.(a1; k1; b1; k2) ! (a2; 1 + k2; b1; k2) ! (a3; 1 + k2; b1; k2)!(a3; 1 + k2; b2; 2 + k2)! (a3; 1 + k2; b3; 2 + k2)This 
ounterexample a
tually represents a family of tra
es, sin
e it is parame-terized by the 
onstants k1 and k2, with k1; k2 � 0, whi
h have been introdu
edby the ICS de
ision pro
edures.In the 
ase of lazy theorem proving, the o�ine integration is parti
ular expen-sive, sin
e restarts implies the re
onstru
tion of ICS logi
al 
ontexts repetitively.Memoization of the de
ision pro
edure 
alls does not improve the situation sig-ni�
antly, sin
e the assignments produ
ed by Cha� in subsequent 
alls usuallydo not have long enough 
ommon pre�xes. This observation, however, might notbe generalizable, sin
e it depends on the spe
i�
, randomized heuristi
s of Cha�for 
hoosing variable assignments.In an online integration, 
hoi
es for propositional variable assignments aresyn
hronized with extending the logi
al 
ontext of the de
ision pro
edures withthe 
orresponding atoms. Dete
tion of in
onsisten
ies in the logi
al 
ontext ofthe de
ision pro
edures triggers ba
ktra
king in the sear
h for variable assign-ments. Furthermore, dete
ted in
onsisten
ies are propagated to the propositionalsear
h engine by adding the 
orresponding in
onsisten
y 
lause (or, using an ex-planation fun
tion, a good overapproximation of the minimally in
onsistent set



15of atoms in the logi
al 
ontext). Sin
e state-of-the-art SAT solvers su
h as Cha�are missing the ne
essary API for realizing su
h an online integration, we devel-oped a homegrown SAT solver whi
h has most of the features of modern SATsolvers and integrated it with ICS. The results of using this online integration forthe Bakery example 
an be found in Table 2 for two di�erent 
on�gurations. 1For ea
h 
on�guration, we list the total time (in se
onds), the number of 
on-
i
ts dete
ted by ICS, and the total number of 
alls to ICS. Altogether, using anexplanation fa
ility 
learly pays o� in that the number of re�nement iterations(
on
i
ts) is redu
ed 
onsiderable.7 Related WorkThere has been mu
h re
ent work in redu
ing the satis�ability problem of Booleanformulas over the theory of equality with uninterpreted fun
tion symbols to aSAT problem [5, 12, 23℄ using eager en
odings of possible instan
es of equalityaxioms. In 
ontrast, lazy theorem proving introdu
es the semanti
s of the for-mula 
onstraints on demand by analyzing spurious 
ounterexamples. Also, ourpro
edure works uniformly for mu
h ri
her sets of 
onstraint theories. It wouldbe interesting experimentally to 
ompare the eager and the lazy approa
h, butben
hmark suites (e.g. www.e
e.
mu.edu/�mvelev) are 
urrently only availableas en
odings of Boolean satis�ability problems.In resear
h that is most 
losely related to ours, Barrett, Dill, and Stump [2℄des
ribe an integration of Cha� with CVC by abstra
ting the Boolean 
onstraintformula to a propositional approximation, then in
rementally re�ning the ap-proximation based on diagnosing 
on
i
ts using theorem proving, and �nallyadding the appropriate 
on
i
t 
lause to the propositional approximation. Thisintegration 
orresponds dire
tly to an online integration in the lazy theoremparadigm. Their approa
h to generate good explanations is di�erent from oursin that they extend CVC with a 
apability of abstra
t proofs for overapproxi-mating minimal sets of in
onsisten
ies. Also, optimizations based on don't 
aresare not 
onsidered in [2℄. The experimental results in [2℄ 
oin
ide with ours inthat they suggest that lazy theorem proving without explanations (there 
alledthe naive approa
h) and o�ine integration qui
kly be
ome impra
ti
al. Usingequivalen
e 
he
king for pipelined mi
ropro
essors, speedups of several orders ofmagnitude over their earlier SVC system are obtained.8 Con
lusionWe developed a bounded model 
he
king (BMC) pro
edure for in�nite-statesystems and linear temporal logi
 formulas with 
onstraints based on a redu
tionto the satis�ability problem of Boolean 
onstraint logi
. This pro
edure is shownto be sound, and although in
omplete in general, we establish 
ompleteness1 The di�eren
es in the number of 
on
i
ts 
ompared to Table 1 are due to the di�erentheuristi
s of the SAT solvers used.



16for invariant formulas. Sin
e BMC problems are propositionally intensive, wepropose a veri�
ation te
hnique based on a lazy 
ombination of a SAT solverwith a 
onstraint solver, whi
h introdu
es only the portion of the semanti
s of
onstraints that is relevant for 
onstru
ting a BMC 
ounterexample.We identi�ed a number of 
on
epts ne
essary for obtaining eÆ
ient imple-mentations of lazy theorem proving. The �rst one is spe
ialized to BMC forasyn
hronous systems in that we generate partial Boolean assignments basedon the stru
ture of program for restri
ting the sear
h spa
e of the SAT solver.Se
ond, good approximations of minimal in
onsistent sets of 
onstraints at rea-sonable 
ost are essential. The proposed any-time algorithm uses a mixture ofstru
tural dependen
ies between 
onstraints and a linear number of reruns of thede
ision pro
edure for re�ning overapproximations. Third, o�ine integration andrestarting the SAT solver results in repetitive work for the de
ision pro
edures.Based on these observations we realized a lazy, online integration in whi
h the
onstru
tion of partial assignments in the Boolean domain is syn
hronized withthe 
onstru
tion of a 
orresponding logi
al 
ontext for the 
onstraint solver, andin
onsisten
ies dete
ted by the 
onstraint solver are immediately propagated tothe Boolean domain. First experimental results are very promising, and manystandard engineering 
an be applied to signi�
antly improve running times.We barely s
rat
hed the surfa
e of possible appli
ations. Given the ri
h set ofpossible 
onstraints, in
luding 
onstraints over uninterpreted fun
tion symbols,for example, our extended BMC methods seems to be suitable for model 
he
kingopen systems, where environments are only partially spe
i�ed. Also, it remainsto be seen if BMC based on lazy theorem proving is a viable alternative tospe
ialized model 
he
king algorithms su
h as the ones for timed automata andextensions thereof for �nding bugs, or even to AI planners dealing with resour
e
onstraints and domain-spe
i�
 modeling.A
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