To be presented at the 18th International Conference on Automated Deduction
(CADE’02), Copenhagen, Denmark, July 2002.
(©Springer-Verlag

Lazy Theorem Proving
for
Bounded Model Checking over Infinite Domains*

Leonardo de Moura, Harald Ruef, and Maria Sorea**

SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025, USA
{demoura, ruess, sorea}@csl.sri.com
http://www.csl.sri.com/

Abstract. We investigate the combination of propositional SAT check-
ers with domain-specific theorem provers as a foundation for bounded
model checking over infinite domains. Given a program M over an infi-
nite state type, a linear temporal logic formula ¢ with domain-specific
constraints over program states, and an upper bound k, our procedure
determines if there is a falsifying path of length k to the hypothesis that
M satisfies the specification ¢. This problem can be reduced to the satis-
fiability of Boolean constraint formulas. Our verification engine for these
kinds of formulas is lazy in that propositional abstractions of Boolean
constraint formulas are incrementally refined by generating lemmas on
demand from an automated analysis of spurious counterexamples us-
ing theorem proving. We exemplify bounded model checking for timed
automata and for RTL level descriptions, and investigate the lazy inte-
gration of SAT solving and theorem proving.

1 Introduction

Model checking decides the problem of whether a system satisfies a temporal
logic property by exploring the underlying state space. It applies primarily to
finite-state systems but also to certain infinite-state systems, and the state space
can be represented in symbolic or explicit form. Symbolic model checking has
traditionally employed a boolean representation of state sets using binary de-
cision diagrams (BDD) [4] as a way of checking temporal properties, whereas
explicit-state model checkers enumerate the set of reachable states of the sys-
tem.

Recently, the use of Boolean satisfiability (SAT) solvers for linear-time tem-
poral logic (LTL) properties has been explored through a technique known as

* This research was supported by SRI International internal research and development,
the DARPA NEST program through Contract F33615-01-C-1908 with AFRL, and
the National Science Foundation under grants CCR-00-86096 and CCR-0082560.

** Also affiliated with University of Ulm, Germany.

bounded model checking (BMC) [7]. As with symbolic model checking, the state
is encoded in terms of booleans. The program is unrolled a bounded number of
steps for some bound k, and an LTL property is checked for counterexamples
over computations of length k. For example, to check whether a program with
initial state I and next-state relation T violates the invariant Inv in the first k
steps, one checks, using a SAT solver:

I(so) ANT'(s0,81) AT (s1,82) A ... NT(sk_1,8K) A (=Inv(se)V ... V-Inv(sg)).

This formula is satisfiable if and only if there exists a path of length at most &
from the initial state sq which violates the invariant Inv. For finite state systems,
BMC can be seen as a complete procedure since the size of counterexamples is
essentially bounded by the diameter of the system [3]. It has been demonstrated
that BMC can be more effective in falsifying hypotheses than traditional model
checking [7, 8].

It is possible to extend the range of BMC to infinite-state systems by en-
coding the search for a counterexample as a satisfiability problem for the logic
of Boolean constraint formulas. For example, the BMC problem for timed au-
tomata can be captured in terms of a Boolean formula with linear arithmetic
constraints. But the method presented here scales well beyond such simple arith-
metic clauses, since the main requirement on any given constraint theory is the
decidability of the satisfiability problem on conjunctions of atomic constraints.
Possible constraint theories include, for example, linear arithmetic, bitvectors,
arrays, regular expressions, equalities over terms with uninterpreted function
symbols, and combinations thereof [20, 24].

Whereas BMC over finite-state systems deals with finding satisfying Boolean
assignments, its generalization to infinite-state systems is concerned with satis-
fiability of Boolean constraint formulas. In initial experiments with PVS [21]
strategies, based on a combination of BDDs for propositional reasoning and a
variant of loop residue [27] for arithmetic, we were usually only able to construct
counterexamples of small depths (< 5). Clearly, more specialized verification
techniques are needed. Since BMC problems are often propositionally intensive,
it seems to be more effective to augment SAT solvers with theorem proving ca-
pabilities, such as ICS [10], than add propositional search capabilities to theorem
provers.

Here, we look at the specific combination of SAT solvers with decision pro-
cedures, and we propose a method that we call lemmas on demand, which in-
vokes the theorem prover lazily in order to efficiently prune out spurious coun-
terexamples, namely, counterexamples that are generated by the SAT solver but
discarded by the theorem prover by interpreting the propositional atoms. For
example, the SAT solver might yield the satisfying assignment p, —¢, where the
propositional variable p represents the atom x = y, and g represents f(z) = f(y).
A decision procedure can easily detect the inconsistency in this assignment. More
importantly, it can be used to generate a set of conflicting assignments that can
be used to construct a lemma that further constrains the search. In the above
example, the lemma —p V ¢ can be added as a new clause in the input to the

SAT solver. This process of refining Boolean formulas is similar in spirit to the
refinement of abstractions based on the analysis of spurious counterexamples or
failed proof attempts [26,25,6,16,9,14,17].

From a set of inconsistent constraints in a spurious counterexample we obtain
an ezplanation as an overapproximation of the minimal, inconsistent subset of
these constraints. The smaller the explanation that is generated from a spurious
counterexample, the greater the pruning in the subsequent search. In this way,
the computation of explanations accelerates the convergence of our procedure.

Altogether, we present a method for bounded model checking over infinite-
state systems that consists of:

— A reduction to the satisfiability problem for Boolean constraint formulas.
— A lazy combination of SAT solving and theorem proving.
— An efficient method for constructing small explanations.

In general, BMC over infinite-state systems is not complete, but we obtain a
completeness result for BMC problems with invariant properties. The main con-
dition on constraints is that the satisfiability of the conjunction of constraints
is decidable. Thus, our BMC procedure can be applied to infinite-state systems
even when the (more) general model-checking problem is undecidable.

The paper is structured as follows. In Section 2 we provide some back-
ground material on Boolean constraints. Section 3 lays the foundation of a
refinement-based satisfiability procedure for Boolean constraint logic. Next, Sec-
tion 4 presents the details of BMC over domain-specific constraints, and Section 5
discusses some simple examples for BMC over clock constraints and the theory
of bitvectors. In Section 6 we experimentally investigate various design choices
in lazy integrations of SAT solvers with theorem proving. Finally, in Sections 7
and 8 we compare with related work and we draw conclusions.

2 Background

A set of variables V' := {&1,...,z,} is said to be typed if there are nonempty
sets D through D,, and a type assignment T such that 7(z;) = D;. For a set of
typed variables V', a variable assignment is a function v from variables x € V to
an element of 7(z).

Let V be a set of typed variables and L be an associated logical language.
A set of constraints in L is called a constraint theory C if it includes constants
true, false and if it is closed under negation; a subset of C of constraints with
free variables in V' C V is denoted by C(V"’). For ¢ € C and v an assignment for
the free variables in ¢, the value of the predicate [c], is called the interpretation
of ¢ w.r.t. v. Hereby, [true], ([false],) is assumed to hold for all (for no) v,
and [—c], holds iff [¢], does not hold. A set of constraints C' C C is said to
be satisfiable if there exists a variable assignment v such that [c], holds for
every c¢ in C; otherwise, C' is said to be unsatisfiable. Furthermore, a function
C-sat(C) is called a C-satisfiability solver if it returns L if the set of constraints
C is unsatisfiable and a satisfying assignment for C' otherwise.

For a given theory C, the set of boolean constraints Bool(C) includes all con-
straints in C and it is closed under conjunction A, disjunction V, and negation
—. The notions of satisfiability, inconsistency, satisfying assignment, and satis-
fiability solver are homomorphically lifted to the set of boolean constraints in
the usual way. If V.= {p1,...,p,} and the corresponding type assignment 7(p;)
is either true or false, then Bool({#rue, false} U V') reduces to the usual notion
of Boolean logic with propositional variables {p1,...,p,}. We call a Boolean
satisfiability solver also a SAT solver. N-ary disjunctions of constraints are also
referred to as clauses, and a formula ¢ € Bool(C(V)) is in conjunctive nor-
mal form (CNF) if it is an n-ary conjunction of clauses. There is a linear-time
satisfiability-preserving transformation into CNF [22].

3 Lazy Theorem Proving

Satisfiability solvers for propositional constraint formulas can be obtained from
the combination of a propositional SAT solver with decision procedures sim-
ply by converting the problem into disjunctive normal form, but the result is
prohibitively expensive. Here, we lay out the foundation of a lazy combination
of SAT solvers with constraint solvers based on an incremental refinement of
Boolean formulas. We restrict our analysis to formulas in CNF, since most mod-
ern SAT solvers expect their input to be in this format.

Translation schemes between propositional formulas and Boolean constraint
formulas are needed. Given a formula ¢ such a correspondence is easily obtained
by abstracting constraints in ¢ with (fresh) propositional variables. More for-
mally, for a formula ¢ € Bool(C) with atoms C = {¢1,...,¢,} € C and a set
of propositional variables P = {pi,...,pn} not occurring in ¢, the mapping «
from Boolean formulas over {c1, ..., ¢, } to Boolean formulas over P is defined as
the homomorphism induced by a(¢;) = p;. The inverse « of such an abstraction
mapping a simply replaces propositional variables p; with their associated con-
straints ¢;. For example, the formula ¢ = f(z) # z A f(f(z)) = x over equalities
of terms with uninterpreted function symbols determines the function o with,
say, a(f(z) # z) = p1 and a(f(f(z)) = x) = po; thus a(p) = p1 A pa. Moreover,
a Boolean assignment v : P — {true, false} induces a set of constraints

y(v) = {ceC|3i.if v(p;) = true then ¢ = y(p;) else ¢ = ~y(p;)} .

Now, given a Boolean variable assignment v such that v(p;) = false and v(p2) =
true, y(v) is the set of constraints {f(z) = =, f(f(z)) = z}. A consistent set of
constraints C determines a set of assignments. For choosing an arbitrary, but
fixed assignment from this set, we assume as given a function choose(C).

Theorem 1. Let ¢ € Bool(C) be a formula in CNF, £ be the literals in a(y),
and I(p) := {L C L]|~(L) is C-inconsistent} be the set of C-inconsistencies for
p; then: ¢ is C-satisfiable iff the following Boolean formula is satisfiable:

a@n(N\ (=1 V ... Vly,)).

{l1,...ln}EI(p)

sat ()
p = alp);
loop
v := Bsat(p);

if v = | then return L;
if C-sat(y(v)) # L then return choose(y(v));

I:= \/ —a(e); p:=pAI
cey(v)

endloop

Fig. 1. Lazy theorem proving for Bool(C).

Thus, every Bool(C) formula can be transformed into an equisatisfiable Boolean
formula as long as the consistency problem for sets of constraints in C is decid-
able. This transformation enables one to use off-the-shelf satisfiability checkers
to determine the satisfiability of Boolean constraint formulas. On the other hand,
the set of literals is exponential in the number of variables and, therefore, an
exponential number of C-inconsistency checks is required in the worst case. It
has been observed, however, that in many cases only small fragments of the set
of C-inconsistencies are needed.

Starting with p = «a(y), the procedure sat(p) in Figure 1 realizes a guided
enumeration of the set of C-inconsistencies. In each loop, the SAT solver B-sat
suggests a candidate assignment v for the Boolean formula p, and the satisfi-
ability solver C-sat for C checks whether the corresponding set of constraints
~(v) is consistent. Whenever this consistency check fails, p is refined by adding
a Boolean analogue I of this inconsistency, and B-sat is applied to suggest a new
candidate assignment for the refined formula p A I. This procedure terminates,
since, in every loop, I is not subsumed by p, and there are only a finite number
of such strengthenings.

Corollary 1. sat(y) in Figure 1 is a satisfiability solver for Bool(C) formulas
in CNF.

We list some essential optimizations. If the variable assignments returned by the
SAT solver are partial in that they include don’t care values, then the number
of argument constraints to C-sat can usually be reduced considerably. The use
of don’t care values also speeds up convergence, since more general lemmas are
generated. Now, assume a function ezplain(C'), which, for an inconsistent set
of constraints C', returns a minimal number of inconsistent constraints in C
or a “good” overapproximation thereof. The use of ezplain(C) instead of the
stronger C' obviously accelerates the procedure. We experimentally analyze
these efficiency issues in Section 6.

6 '

r =x+m
!
r:=x—m-—1
true

Fig. 2. The simple example.

4 Infinite-State BMC

Given a BMC problem for an infinite-state program, an LTL formula with con-
straints, and a bound on the length of counterexamples to be searched for, we
describe a sound reduction to the satisfiability problem of Boolean constraint
formulas and we show completeness for invariant properties. The encoding of
transition relations follows the now-standard approach already taken in [13].
Whereas in [7] LTL formulas are translated directly into propositional formulas,
we use Bichi automata for this encoding. This simplifies substantially the nota-
tions and the proofs, but a direct translation can sometimes be more succinct in
the number of variables needed. We use the common notions for finite automata
over finite and infinite words, and we assume as given a constraint theory C with
a satisfiability solver.

Typed variables in V' := {z1,...,2z,} are also called state variables, and
a program state is a variable assignment over V. A pair (I,T) is a C-program
over V if I € Bool(C(V)) and T € Bool(C(V UV')), where V' is a primed,
disjoint copy of V. I is used to restrict the set of initial program states, and T
specifies the transition relation between states and their successor states. The
set, of C-programs over V is denoted by Prg(C(V')). The semantics of a program
P is given in terms of a transition system M in the usual way, and, by a slight
abuse of notation, we sometimes write M for both the program and its associated
transition system. The system depicted in Figure 2, for example, is expressed
in terms of the program (I,T) over {z,l}, where the counter z is interpreted
over the integers and the variable [for encoding locations is interpreted over the
Booleans (the n-ary connective ® holds iff exactly one of its arguments holds).

I(z,]) == 2>0A1
T(x,,2"1") = (A2 =z+mA-l)®
(RIAz>0N =z2-—-m—-1TA-I)RHIAZ =2 A1)
Initially, the program is in location [and x is greater than or equal to 0, and
the transitions in Figure 2 are encoded by a conjunction of constraints over the
current state variables x,l and the next state variables z’,1’.
The formulas of the constraint linear temporal logic LTL(C) (in negation nor-

mal form) are linear-time temporal logic formulas with the usual “next”, “until”,
and “release” operators, and constraints ¢ € C as atoms.

pu=true | false | c| i Apa | o1V | X | o1 Ups | o1 R ¢

The formula X ¢ holds on some path « iff ¢ holds in the second state of .
1 U ¢y holds on 7 if there is a state on the path where ¢ holds, and at every

preceding state on the path ¢; holds. The release operator R is the logical dual
of U. It requires that ¢s holds along the path up to and including the first state,
where ¢; holds. However, 1 is not required to hold eventually. The derived
operators F o = true Uy and Gy = false R ¢ denote “eventually ¢” and
“globally ¢”. Given a program M € Prg(C) and a path 7 in M, the satisfiability
relation M, 7 |= ¢ for an LTL(C) formula ¢ is given in the usual way with the
notable exception of the case of constraint formulas ¢. In this case, M, 7 |= ¢ if
and only if ¢ holds in the start state of 7. Assuming the notation above, the
C-model checking problem M |= ¢ holds iff for all paths # = sg,s1,...1in M with
so € I it is the case that M, 7 |= . Given a bound k, a program M € Prg(C) and
a formula ¢ € LTL(C) we now consider the problem of constructing a formula
[M,], € Bool(C), which is satisfiable if and only if there is a counterexample of
length & for the C-model checking problem M |= ¢. This construction proceeds
as follows.

1. Definition of [M], as the unfolding of the program M up to step k from
initial states (this requires k disjoint copies of V).

2. Translation of = into a corresponding Biichi automaton B-, whose lan-
guage of accepting words consists of the satisfying paths of —y.

3. Encoding of the transition system for B-, and the Biichi acceptance condi-
tion as a Boolean formula, say [B],,.

4. Forming the conjunction [M,], := [B], A [M],.

5. A satisfying assignment for the formula [M, ¢], induces a counterexample
of length k for the model checking problem M |= .

Definition 1 (Encoding of C-Programs). The encoding [M], of the kth
unfolding of a C-program M = (I,T) in Prg(C({z1,...,2,})) is given by the
Bool(C) formula [M],.

In(z[0]) := I{{z; — 2;[0] | x; € V'})
Tj(zljl, lf + 1)) := T{zi = @ilj] | 2 € VU {z; = zilj +1] |2 € V})

k—1
[M];, == Lo (2[0]) A /\ Tj(«[5), =[5 + 1])

where {z;[j]|0 < j < k} is a family of typed variables for encoding the state of
variable z; in the jth step, z[j] is used as an abbreviation for z1[j],. .., z,[j]

and T'(z; — x;[j]) denotes simultaneous substitution of x; by z;[j] in formula T

A two-step unfolding of the simple program in Figure 2 is encoded by [simple], :=
Ip N Ty N Ty (*)

Io = z[0]>0 A 1[0]
Ty = (0] A (z[1] = 2[0] + m) A =I[1]) ®
(~I[0] A (z[0] > 0) A (2[l] = 2[0] —m — 1) A =I[1]) ®
(=I[0] A (2[1] = =[0]) A I[1])

T = (1] A (z[2] = 2[1] +m) A =l[2]) @
(=[] A (z[1] >0) A (@2] =2[1] —m —1) A =I[2]) ®
(=l1] A (2[2] = 2[1]) A 1[2])

The translation of linear temporal logic formulas into a corresponding Biichi
automaton is well-studied in the literature [11] and does not require additional
explanation. Notice, however, that the translation of LTL(C) formulas yields
Biichi automata with C-constraints as labels. Both the resulting transition system
and the bounded acceptance test based on the detection of reachable cycles with
at least one final state can easily be encoded as Bool(C) formulas.

Definition 2 (Encoding of Biichi Automata). Let V = {z;,...,z,} be a
set of typed variables, B = (¥, Q, A, Q°, F) be a Biichi automaton with labels X
in Bool(C), and pec be a variable (not in V'), which is interpreted over the finite
set of locations) of the Biichi automaton. For a given integer k, we obtain,
as in Definition 1, families of variables z;[j], pc[j] (1 < i < n, 0 < j < k) for
representing the jth state of B in a run of length k. Furthermore, the transition
relation of B is encoded in terms of the C-program Bys over the set of variables
{pc} UV, and [Ba], denotes the encoding of this program as in Definition 1.
Now, given an encoding of the acceptance condition

ace(B)y = k_/l (el = peliln A k) = 5l A (VoV e =))

l=j+1 feF
the k-th unfolding of B is defined by [B],. := [Bam], A acc(B)x.

An LTL(C) formula is said to be R-free (U-free) iff there is an equivalent
formula (in negation normal form) not containing the operator R (U). Note
that U-free formulas correspond to the notion of syntactic safety formulas [28,
15]. Now, it can be directly observed from the semantics of LTL(C) formulas that
every R-free formula can be translated into an automaton over finite words that
accepts a prefix of all infinite paths satisfying the given formula.

Definition 3. Given an automaton B over finite words and the notation as in
Definition 2, the encoding of the k-ary unfolding of B is given by [Ba], A acc(B)y
with the acceptance condition

k
ace(B)g = \/ \/ peljl=f .

Jj=0 feF

Consider the problem of finding a counterexample of length & = 2 to the hy-
pothesis that our running example in Figure 2 satisfies G (z > 0). The negated
property F (z < 0) is an R-free formula, and the corresponding automaton B
over finite words is displayed in Figure 3 (I; is an accepting state.). This au-
tomaton is translated, according to Definition 3, into the formula

[B], = I(B) ANTo(B) ANT1(B) A ace(B) . (xx)

" z <0 @

Fig. 3. Automaton for F (z < 0).

The variables pc[j] and z[j] (j = 0,1,2) are used to represent the first three
states in a run.

I(B) := pcl0] =g
To(B) := (pc[0] = lo Az[0] > 0 A pc[l] = lg) ® (pe[0] = lo Az[0] < OApc[l] =14)
Ty (B) = (pel1] = lo A2{1] > 0A pel2] = o) © (pel1] = by Az{1] < 0Apef2] = 1)

acc(B)y == pc[0] =L Vpe[l] =L Vpc[2] =1

The bounded model checking problem [simple], A [B], for the simple program
is obtained by conjoining the formulas (%) and (%). Altogether, we obtain the
counterexample (0,1) — (m,—l) — (—1,1) of length 2 for the property G (z > 0).

Theorem 2 (Soundness). Let M € Prg(C) and ¢ € LTL(C). If there exists a
natural number & such that [M, y], is satisfiable, then M .

Proof sketch. If [M,], is satisfiable, then so are [B], and [M],. From the
satisfiability of [B], it follows that there exists a path in the Biichi automaton
B that accepts the negation of the formula ¢.

In general, BMC over infinite-state systems is not complete. Consider, for
example, the model checking problem M |= ¢ for the program M = (I,T) over
the variable V. = {z} with I = (x = 0) and T = (¢’ = = + 1) and the formula
¢ =F (x < 0). M can be seen as a one-counter automaton, where initially the
value of the counter z is 0, and in every transition the value of z is incremented by
1. Obviously, it is the case that M = ¢, but there exists no k € IN such that the
formula [M, ¢], is satisfiable. Since —¢ is not an R-free formula, the encoding
of the Biichi automaton Bj must contain, by Definition 2, a finite accepting
cycle, described by pc[k] = pc[0] A z[k] = x[0] or pe[k] = pe[l] Az[k] = z[1] etc.
Such a cycle, however, does not exist, since the program M contains only one
noncycling, infinite path, where the value of x increases in every step, that is

z[i + 1] = x[i] + 1, forall 4 > 0.

Theorem 3 (Completeness for Finite States). Let M be a C-program with
a finite set of reachable states, ¢ be an LTL(C) formula ¢, and k be a given bound;
then: M # ¢ implies 3k € IN.[M,], is satisfiable.

Proof sketch. If M [¢, then there is a path in M that falsifies the formula.
Since the set of reachable states is finite, there is a finite k£ such that [M, o], is
satisfiable by construction.

For a U-free formula ¢, the negation —¢ is R-free and can be encoded in
terms of an automaton over finite words. Therefore, by considering only U-
free properties one gets completeness also for programs with an infinite set of

10

Fig. 4. Timed automata example.

reachable states. A particularly interesting class of U-free formulas are invariant
properties.

Theorem 4 (Completeness for Syntactic Safety Formulas). Let M be a
C-program, p € LTL(C) be a U-free property, and k be some given integer bound.
Then M [¢ implies 3k € IN. [M, o], is satisfiable.

Proof sketch. If M £ ¢ and ¢ is U-free then there is a finite prefix of a path
of M that falsifies . Thus, by construction of [M, ¢],, there is a finite k such
that [M, ¢], is satisfiable.

This completeness result can easily be generalized to all safety properties [15]
by observing that the prefixes violated by these properties can also be accepted
by an automaton on finite words.

5 Examples

We demonstrate BMC over clock constraints and the theory of bitvectors by
means of some simple but, we think, illustrative examples.

The timed automaton [1] in Figure 4 has two real-valued clocks z, y, the
transitions are decorated with clock constraints and clock resets, and the invari-
ant y < 1 in location [y specifies that the system may stay in Iy only as long as
the value of y does not exceed 1. The transitions can easily be described in terms
of a program with linear arithmetic constraints over states (pc, z,y), where pc
is interpreted over the set of locations {ly,1,l2} and the clock variables z, y are
interpreted over Rg’. Here we show only the encoding of the time delay steps.

delay(pc,z,y, pc', 2", y") ==
F36>0.((pe=lo=>y <) A (@' =2+ A (Y =y+06) A (pc' = pc)).

This relation can easily be transformed into an equivalent quantifier-free formula.
Now, assume the goal of falsifying the hypothesis that the timed automaton in
Figure 4 satisfies the LTL(C) property ¢ = (G —l2), that is, the automaton never
reaches location /5. Using the BMC procedure over linear arithmetic constraints
one finds the counterexample

(l(],.’IJZO,y:O) - (lll’EZO,yZO) - (1277":0/?;:0)

11

of length 2. By using Skolemization of the delay step § instead of quantifier
elimination, explicit constraints are synthesized for the corresponding delay steps
in countertraces.

Now, we examine BMC over a theory B of bitvectors by encoding the shift
register example in [3] as follows.

Ipg(my) := true Ts(Tn, Yn) = (yn = mp[l:n — 1] x 1;)

The variables z,, and y,, are interpreted over bitvectors of length n, z,[1 : n — 1]
denotes extraction of bits 1 through n — 1, * denotes concatenation, and 0,
(1,,) is the constant bitvector of length n with all bits set to zero (one). In the
initial state the content of the register z, is arbitrary. Given the LTL(B) property
¢ = F(z, =0,) and k = 2 the corresponding BMC problem reduces to showing
satisfiability of the Bool(B) formula

(iEl = .’170[1:77/—1]*11) N (372 = .’171[1271—1]*11) N
(.’I/‘o#onv.’ﬁl ;éOnVrz;éOn) A (.’EOZ.’E2V.’E1 :.’L‘Q).

The variables xg, 1, T2 are interpreted over bitvectors of size n, since they
are used to represent the first three states in a run of the shift register. The
satisfiability of this formula is established by choosing all unit literals to be true.
Using theory-specific canonization (rewrite) steps for the bitvector theory B [18],
we obtain an equation between variables x5 and zg.

xe = z[l:in—1] %13 = (xo[l:n—1]*1)[1:n—1] * 13 = x[2:n—1] * 15

This canonization step corresponds to a symbolic simulation of depth 2 of the
synchronous circuit. Now, in case the SAT solver decides the equation zg = x4
to be true, the bitvector decision procedures are confronted with solving the
equality 9 = z¢[2:n — 1] x 1. The most general solution for z(is obtained
using the solver in [18] and, by simple backsubstitution, one gets a satisfying
assignment for zg, x1, 2, which serves as a counterexample for the assertion
that the shift register eventually is zero. The number of case splits is linear in the
bound k, and, by leaving the word size uninterpreted, our procedure invalidates
a family of shift registers without runtime penalties.

6 Efficiency Issues

The purpose of the experiments in this section is to identify useful concepts and
techniques for obtaining efficient implementations of the lazy theorem proving
approach. For these experiments we implemented several refinements of the ba-
sic lazy theorem proving algorithm from Section 3, using SAT solvers such as
Chaff [19] and ICS [10] for deciding linear arithmetic constraints. These programs
either returns L in case the input Boolean constraint problem is unsatisfiable
or an assignment for the variables. We describe some of our experiments using
the Bakery mutual exclusion protocol (see Figure 5). Usually, the y; counters

12

y2 =0V y(lzov)
Yy =y +1 y1 < Y2 Yy =y + 1 —(y1 < Y2
RS C D S 2
v =0 Yy =0

Fig. 5. Bakery Mutual Exclusion Protocol.

are initialized with 0, but here we simultaneously consider a family of Bak-
ery algorithms by relaxing the condition on initial values of the counters to
y1 > 0Ayy > 0. Our experiments represent worst-case scenarios in that the
corresponding BMC problems are all unsatisfiable. Thus, unsatisfiability of the
BMC formula for a given k corresponds to a verification of the mutual exclusion
property for paths of length < k.

Initial experiments with a direct implementation of the refinement algorithm
in Figure 1 clearly show that this approach quickly becomes impractical. We
identified two main reasons for this inefficiency.

First, for the interleaving semantics of the Bakery processes, usually only
a small subset of assignments is needed for establishing satisfiability. This can
already be demonstrated using the simple example in Figure 2. Suppose a satis-
fying assignment v (counterexample) corresponding to executing the transition
I — -l with 2’ = =+ m in the first step; that is, [I[0]] , [z[1] = z[0] + m], and
[-1[1], hold. Clearly, the value of the literals z[0] > 0, z[1] = z[0] — m — 1, and
z[1] = z[0] are don’t cares, since they are associated with some other transition.
Overly eager assignment of truth values to these constraints results in useless
search. For example, if [2[1] = 2[0]], holds, then an inconsistency is detected,
since m > 0, and z[1] = z[0] + m = z[0]. Consequently, the assignment v is
discarded and the search continues. To remedy the situation we analyze the
structure of the formula before converting it to CNF, and use this information
to assign don’t care values to literals corresponding to unfired transitions in each
step.

Second, the convergence of the refinement process must be accelerated by
finding concise overapproximations ezplain(C) of the minimal set of inconsis-
tent constraints C' corresponding to a given Boolean assignment. There is an
obvious trade-off between the conciseness of this approximation and the cost for
computing it. We are proposing an algorithm for finding such an overapproxi-
mation based on rerunning the decision procedures O(m x n) times, where m is
some given upper bound on the number of iterations (see below) and n is the
number of given constraints.

The run in Figure 6 illustrates this procedure. The constraints in Figure 6.(a)
are asserted to ICS from left-to-right. Since ICS detects a conflict when asserting
Y6 < 0, this constraint is in the minimal inconsistent set. Now, an overapproxima-
tion of the minimal inconsistent sets is produced by connecting constraints with
common variables (Figure 6.(a)). This overapproximation is iteratively refined
by collecting the constraints in an array as illustrated in Figure 6.(b). Configu-

13
(a) ~~~’y5 >0 ’ys=y4+1Hm5:m4+1Hye=y5‘me=m5Hy5>y4Hy6§0‘---

0 1 2 3 4
(d) array = |y5 > 0|y5 =yq + 1|y6 = y5|y5 > y4|y6 < 0|

Fig. 6. Trace for linear time ezplain function.

rations consist of triples (C,I, h), where C is a set of constraints guaranteed to
be in the minimal inconsistent set, and the integers [, h are the lower and upper
bounds of constraint indices still under consideration. The initial configuration
in our example is ({ys < 0}, 0, 3). In each refinement step, we maintain the
invariant that C U {array[i] | | <i < h} is inconsistent. Given a configuration
(C,1,h), individual constraints of index between ! and h are added to C until
an inconsistency is detected. In the first iteration of our running example, we
process constraints from right-to-left, and an inconsistency is only detected when
processing y5 > 0. The new configuration ({ys < 0,y5 > 0}, 1, 3) is obtained by
adding this constraint to the set of constraints already known to be in a minimal
inconsistent set, by leaving h unchanged, and by setting ! to the increment of the
index of the new constraint. The order in which constraints are asserted is in-
verted after each iteration. Thus, in the next step in our example, we successively
add constraints between 1 and 3 from left-to-right to the set {ys < 0,y5 > 0}.
An inconsistency is first detected when asserting ys = y5 to this set, and the
new configuration is obtained as ({ys < 0,y5 > 0,96 = y5},1, 1), since the lower
bound [is now left unchanged and the upper bound is set to the decrement of
the index of the constraint for which the inconsistency has been detected. The
procedure terminates if C' in the current configuration is inconsistent or after m
refinements. In our example, two refinement steps yield the minimal inconsistent
set {ys > 0,y6 = y5,¥s < 0}. In general, the number of assertions is linear in
the number of constraints, and the algorithm returns the exact minimal set if
its cardinality is less than or equal to the upper bound m of iterations.

Given these refinements to the satisfiability algorithm in Figure 1, we imple-
mented an offline integration of Chaff with ICS, in which the SAT solver and the
decision procedures are treated as black boxes, and both procedures are restarted
in each lazy refinement step. Table 1 includes some statistics for three different
configurations depending on whether don’t care processing or the linear explain
are enabled. For each configuration, we list the total time (in seconds) and the
number of conflicts detected by the decision procedure. This table indicates that
the effort of assigning don’t care values depending on the asynchronous nature of
the program and the use of explain functions significantly improves performance.

Recall that the experiments so far represent worst-case scenarios in that
the given formulas are unsatisfiable. For BMC problems with counterexamples,
however, our procedure usually converges much faster. Consider, for example
the mutual exclusion problem of the Bakery protocol with a guard y; > yo — 1
instead of =(y; < ya). The corresponding counterexample for k£ = 5 is produced

14

don’t cares, no explain|| no don’t cares, explain|| don’t cares, explain
depth | time conflicts time conflicts time conflicts
5 0.71 66 45.23 577 0.31 16
6 2.36 132 83.32 855 0.32 18
7 12.03 340 286.81 1405 1.75 58
8 56.65 710 627.90 1942 2.90 73
9 |230.88 1297 1321.57 2566 8.00 105
10 [985.12 2296 - - 15.28 185
15 - - - - 511.12 646

Table 1. Offline lazy theorem proving (-’ is time > 1800 secs).

no explain explain
depth | time | conflicts | calls to ICS || time | conflicts | calls to ICS
5 0.03 24 162 0.01 7 71
6 0.08 48 348 0.01 7 83
7 0.19 96 744 0.02 7 94
8 0.98 420 3426 0.05 29 461
9 2.78 936 7936 0.19 70 1205
10 8.60 2008 17567 0.26 85 1543
15 - - - 4.07 530 13468

Table 2. Online lazy theorem proving.

in a fraction of a second after eight refinements.

(a'l:k]7b]7k2) _>(a2:1+k2:b1:k2)
(a?):l +k2:b2:2+k2) — (a3:1 +k2,b3,2+k2)

— ((1371 +k2,b],k2) —

This counterexample actually represents a family of traces, since it is parame-
terized by the constants k; and ks, with ky, ks > 0, which have been introduced
by the ICS decision procedures.

In the case of lazy theorem proving, the offline integration is particular expen-
sive, since restarts implies the reconstruction of ICS logical contexts repetitively.
Memoization of the decision procedure calls does not improve the situation sig-
nificantly, since the assignments produced by Chaff in subsequent calls usually
do not have long enough common prefixes. This observation, however, might not
be generalizable, since it depends on the specific, randomized heuristics of Chaff
for choosing variable assignments.

In an online integration, choices for propositional variable assignments are
synchronized with extending the logical context of the decision procedures with
the corresponding atoms. Detection of inconsistencies in the logical context of
the decision procedures triggers backtracking in the search for variable assign-
ments. Furthermore, detected inconsistencies are propagated to the propositional
search engine by adding the corresponding inconsistency clause (or, using an ex-
planation function, a good overapproximation of the minimally inconsistent set

15

of atoms in the logical context). Since state-of-the-art SAT solvers such as Chaft
are missing the necessary API for realizing such an online integration, we devel-
oped a homegrown SAT solver which has most of the features of modern SAT
solvers and integrated it with ICS. The results of using this online integration for
the Bakery example can be found in Table 2 for two different configurations. !
For each configuration, we list the total time (in seconds), the number of con-
flicts detected by ICS, and the total number of calls to ICS. Altogether, using an
explanation facility clearly pays off in that the number of refinement iterations
(conflicts) is reduced considerable.

7 Related Work

There has been much recent work in reducing the satisfiability problem of Boolean
formulas over the theory of equality with uninterpreted function symbols to a
SAT problem [5,12,23] using eager encodings of possible instances of equality
axioms. In contrast, lazy theorem proving introduces the semantics of the for-
mula constraints on demand by analyzing spurious counterexamples. Also, our
procedure works uniformly for much richer sets of constraint theories. It would
be interesting experimentally to compare the eager and the lazy approach, but
benchmark suites (e.g. www.ece.cmu.edu/~mvelev) are currently only available
as encodings of Boolean satisfiability problems.

In research that is most closely related to ours, Barrett, Dill, and Stump [2]
describe an integration of Chaff with CVC by abstracting the Boolean constraint
formula to a propositional approximation, then incrementally refining the ap-
proximation based on diagnosing conflicts using theorem proving, and finally
adding the appropriate conflict clause to the propositional approximation. This
integration corresponds directly to an online integration in the lazy theorem
paradigm. Their approach to generate good explanations is different from ours
in that they extend CVC with a capability of abstract proofs for overapproxi-
mating minimal sets of inconsistencies. Also, optimizations based on don’t cares
are not considered in [2]. The experimental results in [2] coincide with ours in
that they suggest that lazy theorem proving without explanations (there called
the naive approach) and offline integration quickly become impractical. Using
equivalence checking for pipelined microprocessors, speedups of several orders of
magnitude over their earlier SVC system are obtained.

8 Conclusion

We developed a bounded model checking (BMC) procedure for infinite-state
systems and linear temporal logic formulas with constraints based on a reduction
to the satisfiability problem of Boolean constraint logic. This procedure is shown
to be sound, and although incomplete in general, we establish completeness

! The differences in the number of conflicts compared to Table 1 are due to the different
heuristics of the SAT solvers used.

16

for invariant formulas. Since BMC problems are propositionally intensive, we
propose a verification technique based on a lazy combination of a SAT solver
with a constraint solver, which introduces only the portion of the semantics of
constraints that is relevant for constructing a BMC counterexample.

We identified a number of concepts necessary for obtaining efficient imple-
mentations of lazy theorem proving. The first one is specialized to BMC for
asynchronous systems in that we generate partial Boolean assignments based
on the structure of program for restricting the search space of the SAT solver.
Second, good approximations of minimal inconsistent sets of constraints at rea-
sonable cost are essential. The proposed any-time algorithm uses a mixture of
structural dependencies between constraints and a linear number of reruns of the
decision procedure for refining overapproximations. Third, offline integration and
restarting the SAT solver results in repetitive work for the decision procedures.
Based on these observations we realized a lazy, online integration in which the
construction of partial assignments in the Boolean domain is synchronized with
the construction of a corresponding logical context for the constraint solver, and
inconsistencies detected by the constraint solver are immediately propagated to
the Boolean domain. First experimental results are very promising, and many
standard engineering can be applied to significantly improve running times.

We barely scratched the surface of possible applications. Given the rich set of
possible constraints, including constraints over uninterpreted function symbols,
for example, our extended BMC methods seems to be suitable for model checking
open systems, where environments are only partially specified. Also, it remains
to be seen if BMC based on lazy theorem proving is a viable alternative to
specialized model checking algorithms such as the ones for timed automata and
extensions thereof for finding bugs, or even to Al planners dealing with resource
constraints and domain-specific modeling.

Acknowledgements. We would like to thank the referees for their invaluable
comments for improving this paper. S. Owre, J. Rushby, and N. Shankar provided
many useful inputs.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. 5th
Symp. on Logic in Computer Science (LICS 90), pages 414 425, 1990.

2. C. W. Barrett, D. L. Dill, and A. Stump. Checking Satisfiability of First-Order
Formulas by Incremental Translation to SAT, 2002. To be presented at CAV 2002.

3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zh. Symbolic model checking without
BDDs. LNCS, 1579, 1999.

4. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677 691, August 1986.

5. R. E. Bryant, S. German, and M. N. Velev. Exploiting positive equality in a logic
of equality with uninterpreted functions. LNCS, 1633:470 482, 1999.

6. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. LNCS, 1855:154 169, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

17

E.M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7 34, 2001.

F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M.Y. Vardi.
Benefits of bounded model checking in an industrial setting. LNCS, 2101:436 453,
2001.

Satyaki Das and David L. Dill. Successive approximation of abstract transition
relations. In Symposium on Logic in Computer Science, pages 51 60. IEEE, 2001.
J.-C. Fillidtre, S. Owre, H. Ruef}, and N. Shankar. ICS: Integrated Canonizer and
Solver. LNCS, 2102:246-249, 2001.

Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Protocol Specification Testing
and Verification, pages 3—18, Warsaw, Poland, 1995. Chapman & Hall.

A. Goel, K. Sajid, H. Zhou, and A. Aziz. BDD based procedures for a theory of
equality with uninterpreted functions. LNCS, 1427:244 255, 1998.

T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193 244, June 1994.
Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy
abstraction. ACM SIGPLAN Notices, 31(1):58-70, 2002.

Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Formal
Methods in System Design, 19(3):291-314, 2001.

Yassine Lachnech, Saddek Bensalem, Sergey Berezin, and Sam Owre. Incremental
verification by abstraction. LNCS, 2031:98 112, 2001.

M.O. Moller, H. Ruef}; and M. Sorea. Predicate abstraction for dense real-time
systems. Electronic Notes in Theoretical Computer Science, 65(6), 2002.

O. Moller and H. Ruef}. Solving bit-vector equations. LNCS, 1522:36 48, 1998.
Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automnation Conference (DAC’01), June 2001.

G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245-257, 1979.
S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In 11th International Conference on Automated Deduction (CADE), volume 607
of Lecture Notes in Artificial Intelligence, pages 748-752. Springer-Verlag, 1992.
David A. Plaisted and Steven Greenbaum. A structure preserving clause form
translation. Journal of Symbolic Computation, 2(3):293-304, September 1986.

A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas
by small domains instantiations. LNCS, 1633:455 469, 1999.

H. Ruefl and N. Shankar. Deconstructing Shostak. In 16th Symposium on Logic
in Computer Science (LICS 2001). IEEE Press, June 2001.

Vlad Rusu and Eli Singerman. On proving safety properties by integrating static
analysis, theorem proving and abstraction. LNCS, 1579:178-192, 1999.

H. Saidi. Modular and incremental analysis of concurrent software systems. In
14th IEEE International Conference on Automated Software Engineering, pages
92-101. IEEE Computer Society Press, 1999.

Robert Shostak. Deciding linear inequalities by computing loop residues. Journal
of the ACM, 28(4):769 779, October 1981.

A. P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of
Computing, 6(5):495-512, 1994.

